论文标题
量子计算机的基于AGP的统一耦合群集理论
AGP-based unitary coupled cluster theory for quantum computers
论文作者
论文摘要
电子结构方法通常受益于对称性破坏和恢复,特别是在强相关方面。量子计算机上的Ansätze也是如此。我们在反对称的Geminal Power(AGP)上开发了一种统一的耦合聚类方法,该状态正式等同于次数项目的Bardeen--cooper--schrieffer波函数。我们演示了我们在一个和二维中单频段费米 - 哈伯德式哈密顿人的方法。我们还探索了选择后作为国家准备步骤,以获得相关的AGP,并证明它在测量次数中的缩放量不得差于$ \ Mathcal {o}(\ sqrt {M})$,从而使其成为较便宜的替代方案,可以使集成的替代方案较低,以使粒子编号对称。
Electronic structure methods typically benefit from symmetry breaking and restoration, specially in the strong correlation regime. The same goes for Ansätze on a quantum computer. We develop a unitary coupled cluster method on the antisymmetrized geminal power (AGP) -- a state formally equivalent to the number-projected Bardeen--Cooper--Schrieffer wavefunction. We demonstrate our method for the single-band Fermi--Hubbard Hamiltonian in one and two dimensions. We also explore post-selection as a state preparation step to obtain correlated AGP and prove that it scales no worse than $\mathcal{O}(\sqrt{M})$ in the number of measurements, thereby making it a less expensive alternative to gauge integration to restore particle number symmetry.