论文标题
行人轨迹预测的社会解释树
Social Interpretable Tree for Pedestrian Trajectory Prediction
论文作者
论文摘要
了解许多视力应用的多个社会接受的未来行为是一项重要任务。在本文中,我们提出了一种基于树的方法,称为社会解释树(SIT),以解决此多模式预测任务,其中根据观察到的轨迹的先前信息来建立手工制作的树,以建模多个将来的轨迹。具体而言,从根到叶的树中的路径代表一个可能的未来轨迹。 SIT采用了粗到最新的优化策略,在该策略中,该树首先是由高阶速度建造的,以平衡树木的复杂性和覆盖范围,然后贪婪地优化以鼓励多模式。最后,使用教师的精炼操作来预测最终的细轨迹。与利用隐式潜在变量来表示可能未来的轨迹的先前方法相比,树中的路径可以明确解释粗糙的移动行为(例如,直行,然后右转),从而提供更好的解释性。尽管有手工制作的树,但对ETH-COY和Stanford无人机数据集的实验结果表明,我们的方法能够匹配或超过最新方法的性能。有趣的是,实验表明,未经训练的原始树木表现优于许多先前的深神网络方法。同时,我们的方法在长期预测和不同的最佳$ K $预测中提供了足够的灵活性。
Understanding the multiple socially-acceptable future behaviors is an essential task for many vision applications. In this paper, we propose a tree-based method, termed as Social Interpretable Tree (SIT), to address this multi-modal prediction task, where a hand-crafted tree is built depending on the prior information of observed trajectory to model multiple future trajectories. Specifically, a path in the tree from the root to leaf represents an individual possible future trajectory. SIT employs a coarse-to-fine optimization strategy, in which the tree is first built by high-order velocity to balance the complexity and coverage of the tree and then optimized greedily to encourage multimodality. Finally, a teacher-forcing refining operation is used to predict the final fine trajectory. Compared with prior methods which leverage implicit latent variables to represent possible future trajectories, the path in the tree can explicitly explain the rough moving behaviors (e.g., go straight and then turn right), and thus provides better interpretability. Despite the hand-crafted tree, the experimental results on ETH-UCY and Stanford Drone datasets demonstrate that our method is capable of matching or exceeding the performance of state-of-the-art methods. Interestingly, the experiments show that the raw built tree without training outperforms many prior deep neural network based approaches. Meanwhile, our method presents sufficient flexibility in long-term prediction and different best-of-$K$ predictions.