论文标题

热图像的语义分割:比较调查

Semantic Segmentation for Thermal Images: A Comparative Survey

论文作者

Kütük, Zülfiye, Algan, Görkem

论文摘要

语义细分是一项具有挑战性的任务,因为它需要与其他计算机视觉问题相比,图像的低级空间信息过多。像素级分类的准确性可能会受到许多因素的影响,例如成像限制和图像中对象边界的歧义。传统方法利用了具有深神经网络(DNN)的可见光谱中捕获的三通道RGB图像。由于天气和照明条件,热成像摄像头能够捕获细节,因此热图像可以在分割期间显着贡献。在语义细分中使用红外光谱具有许多现实世界中的用例,例如自动驾驶,医学成像,农业,国防工业等。由于这种用例范围很广,在红外光谱的帮助下设计准确的语义分割算法是一个重要的挑战。一种方法是将可见的和红外光谱图像同时用作输入。由于丰富的输入信息,这些方法可以实现更高的准确性,并需要额外的努力来对齐和处理多个输入。另一种方法是仅使用热图像,从而使较小用例的硬件成本更少。即使对语义分割方法进行了多次调查,但文献仍缺乏全面的调查,以使用红外光谱明确围绕语义分割。这项工作旨在通过介绍文献中的算法并通过其输入图像对其进行分类来填补这一空白。

Semantic segmentation is a challenging task since it requires excessively more low-level spatial information of the image compared to other computer vision problems. The accuracy of pixel-level classification can be affected by many factors, such as imaging limitations and the ambiguity of object boundaries in an image. Conventional methods exploit three-channel RGB images captured in the visible spectrum with deep neural networks (DNN). Thermal images can significantly contribute during the segmentation since thermal imaging cameras are capable of capturing details despite the weather and illumination conditions. Using infrared spectrum in semantic segmentation has many real-world use cases, such as autonomous driving, medical imaging, agriculture, defense industry, etc. Due to this wide range of use cases, designing accurate semantic segmentation algorithms with the help of infrared spectrum is an important challenge. One approach is to use both visible and infrared spectrum images as inputs. These methods can accomplish higher accuracy due to enriched input information, with the cost of extra effort for the alignment and processing of multiple inputs. Another approach is to use only thermal images, enabling less hardware cost for smaller use cases. Even though there are multiple surveys on semantic segmentation methods, the literature lacks a comprehensive survey centered explicitly around semantic segmentation using infrared spectrum. This work aims to fill this gap by presenting algorithms in the literature and categorizing them by their input images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源