论文标题

具有界面系统的本本征算术的一阶扰动理论

First-order perturbation theory of eigenmodes for systems with interfaces

论文作者

Sztranyovszky, Zoltan, Langbein, Wolfgang, Muljarov, Egor A.

论文摘要

我们为具有界面的系统中的本征码提供了一个确切的一阶扰动理论,从而导致材料不连续。我们表明,当接口变形时,扰动序列的高阶项可能会在变形深度中以一阶的一阶有助于特征频率。这意味着通常的对角线近似不一定等于第一阶近似,从而使众所周知的单模结果不足。从所有高阶项中提取真正的一阶校正,使我们能够以修改的形式恢复对角线形式。单模一阶校正对电磁本征码的一般公式是得出的,能够用任意形状处理分散,磁性和手性材料。

We present an exact first-order perturbation theory for the eigenmodes in systems with interfaces causing material discontinuities. We show that when interfaces deform, higher-order terms of the perturbation series can contribute to the eigenmode frequencies in first order in the deformation depth. This means that the usual diagonal approximation is not necessarily equal to the firstorder approximation, rendering the well known single-mode result insufficient. Extracting the true first-order correction from all higher-order terms enables us to recover the diagonal formalism in a modified form. A general formula for the single-mode first-order correction to electromagnetic eigenmodes is derived, capable of treating dispersive, magnetic, and chiral materials with arbitrary shapes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源