论文标题

移动半空间模型的不变性

Shift invariance of half space integrable models

论文作者

He, Jimmy

论文摘要

我们制定并建立了某些可集成的半空间模型的对称性,类似于全空间中模型对称性的最新结果。我们的起点是在半空间中的彩色随机六个顶点模型,我们通过可能具有独立关注的融合过程获得了不对称的简单排除过程以及Beta聚合物的结果。作为一种应用,我们在定向交换过程的$ b $类似物中的吸收时间与在半空间中的最后一次通行时间之间建立了分布身份,从而在吸收时间内建立了baik-ben-péché相变。该证明使用Hecke代数和通过Yang-Baxter和反射方程的六个顶点模型的集成性。

We formulate and establish symmetries of certain integrable half space models, analogous to recent results on symmetries for models in a full space. Our starting point is the colored stochastic six vertex model in a half space, from which we obtain results on the asymmetric simple exclusion process, as well as for the beta polymer through a fusion procedure which may be of independent interest. As an application, we establish a distributional identity between the absorption time in a type $B$ analogue of the oriented swap process and last passage times in a half space, establishing the Baik--Ben Arous--Péché phase transition for the absorption time. The proof uses Hecke algebras and integrability of the six vertex model through the Yang--Baxter and reflection equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源