论文标题

个性化建议下的偏好动态

Preference Dynamics Under Personalized Recommendations

论文作者

Dean, Sarah, Morgenstern, Jamie

论文摘要

在用户的偏好和观点不会随着所看到的内容而变化,许多项目(实用和学术)都设计了算法,以将用户与他们所享受的内容相匹配。有证据表明,个人的偏好是由他们看到的内容直接影响的 - 激进化,兔子孔,极化和无聊都是受内容影响的偏好现象。即使在具有“大众媒体”的生态系统中,也可能发生极化,在没有发生个性化的地方,正如最近在〜\ citet {hkazla2019地几何}的自然偏好动力学模型中所探讨的,并且〜\ citet {gaitonde2021pallization}。如果所有用户的喜好都符合他们已经喜欢的内容,或者是从他们已经不喜欢的内容中排斥的,则统一的媒体消费会导致一系列异质偏好的人群,仅聚集了两个杆。 在这项工作中,我们探讨了当用户收到\ emph {个性化}内容建议时,是否发生类似于两极分化的现象。我们使用类似的偏好动态模型,其中个人的偏好转向消费和享受的内容,并远离他们消费和不喜欢的内容。我们表明,在这种环境中,标准用户奖励最大化几乎是一个几乎微不足道的目标(一大类简单算法只会实现不断的遗憾)。因此,一个更有趣的目标是了解在什么条件下,建议算法可以确保用户偏好的平稳性。我们展示了如何设计一个内容建议,这些建议在可用内容集的轻度条件下,何时知道用户的偏好,以及如何在用户的偏好中学习足够的知识,即使用户最初未知,也可以对用户的偏好进行足够的学习。

Many projects (both practical and academic) have designed algorithms to match users to content they will enjoy under the assumption that user's preferences and opinions do not change with the content they see. Evidence suggests that individuals' preferences are directly shaped by what content they see -- radicalization, rabbit holes, polarization, and boredom are all example phenomena of preferences affected by content. Polarization in particular can occur even in ecosystems with "mass media," where no personalization takes place, as recently explored in a natural model of preference dynamics by~\citet{hkazla2019geometric} and~\citet{gaitonde2021polarization}. If all users' preferences are drawn towards content they already like, or are repelled from content they already dislike, uniform consumption of media leads to a population of heterogeneous preferences converging towards only two poles. In this work, we explore whether some phenomenon akin to polarization occurs when users receive \emph{personalized} content recommendations. We use a similar model of preference dynamics, where an individual's preferences move towards content the consume and enjoy, and away from content they consume and dislike. We show that standard user reward maximization is an almost trivial goal in such an environment (a large class of simple algorithms will achieve only constant regret). A more interesting objective, then, is to understand under what conditions a recommendation algorithm can ensure stationarity of user's preferences. We show how to design a content recommendations which can achieve approximate stationarity, under mild conditions on the set of available content, when a user's preferences are known, and how one can learn enough about a user's preferences to implement such a strategy even when user preferences are initially unknown.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源