论文标题
检测带有不完整干涉数据的偏心闭合二元超质量黑洞
Detection of eccentric close-binary supermassive black holes with incomplete interferometric data
论文作者
论文摘要
最近的研究提出,重力+仪器能够通过测量热灰尘发射的光中心变化来追踪Subparsec近二元超级质量黑洞(CB-SMBHS)的圆轨道。但是,在这些物体的整个演化过程中,CB-SMBHS轨道可能会变得高度偏心,并且轨道周期可能比观察时间基线更长。我们研究了当观察到的天体数据和径向速度的时间基准比轨道时期短得多时,我们研究了以热灰尘发射和高偏心率检测CB-SMBH的问题(ECBSMBH,E = 0.5)。 ECBSMBH的开普勒模型的参数空间很大,用于探索目的。因此,我们将贝叶斯方法应用于ECBSMBH的轨道元素,以将径向速度和天体数据结合在一起,涵盖了轨道时期的一小部分。我们估计,在重力 +范围内的许多潜在ECBSMBH系统将与计划的圆形靶标相似。我们表明,使用覆盖约10%轨道的观测时间基准增加了确定ECBSMBH的周期,偏心率和总质量的可能性。当观察时间基线变得太短(〜5%)时,检索到的ECBSMBH参数的质量降低。我们还说明了如何使用干涉法来估计ECBSMBH发射线的照片中心,这可能与重力+后继者有关。即使与圆形的SQRT {1-e^{2}}相比,ECBSMBH系统的星体信号的降低了,我们发现ECBSMBHS的热粉尘发射可以通过重力+在基本水平上追溯。
Recent studies have proposed that GRAVITY+ instrument is able to trace the circular orbit of the subparsec close-binary supermassive black holes (CB-SMBHs) by measuring the photocentre variation of the hot dust emission. However, the CB-SMBHs orbit may become highly eccentric throughout the evolution of these objects, and the orbital period may be far longer than the observational time baseline. We investigate the problem of detecting the CB-SMBH with hot dust emission and high eccentricity (eCBSMBH, e=0.5) when the observed time baselines of their astrometric data and radial velocities are considerably shorter than the orbital period. The parameter space of the Keplerian model of the eCBSMBH is large for exploratory purposes. We therefore applied the Bayesian method to fit orbital elements of the eCBSMBH to combined radial velocity and astrometric data covering a small fraction of the orbital period. We estimate that a number of potential eCBSMBH systems within reach of GRAVITY + will be similar to the number of the planned circular targets. We show that using observational time baselines that cover ~ 10% of the orbit increases the possibility of determining the period, eccentricity, and total mass of an eCBSMBH. When the observational time baseline becomes too short (~ 5%), the quality of the retrieved eCBSMBH parameters degrades. We also illustrate how interferometry may be used to estimate the photo-centre at the eCBSMBH emission line, which could be relevant for GRAVITY+ successors. Even if the astrometric signal for eCBSMBH systems is reduced by a factor of sqrt{1-e^{2}} compared to circular ones, we find that the hot dust emission of eCBSMBHs can be traced by GRAVITY+ at the elementary level.