论文标题

隐式函数定理:对域大小的估计值

Implicit Function Theorem: Estimates on the size of the domain

论文作者

Jindal, Ashutosh, Chatterjee, Debasish, Banavar, Ravi

论文摘要

在本文中,我们介绍了隐式函数定理和逆函数定理的域大小的明确估计。对于连续差异两次的地图,这些估计值取决于在感兴趣点评估的一阶导数的大小,而在感兴趣区域上绑定了二阶导数。本文的关键贡献之一是所提供的估计值需要最少的数值计算。特别是,这些估计值在没有任何中间优化程序的情况下得出。然后,我们在优化和系统和控制理论中介绍了三个应用,其中这些界限的计算很重要。首先,在电气网络中,功率流操作可以写为四二次约束二次程序(QCQPS),我们利用界限来计算允许的功率变化的大小,以确保电源系统网络的稳定操作。其次,借助我们的界限,计算了系统矩阵中扰动的代数riccati方程(在控制问题中经常遇到的)正定解的稳健度。最后,我们采用这些界限来提供对域大小的定量估计,以使离散时间控制系统的反馈线性化。

In this article, we present explicit estimates of the size of the domain on which the Implicit Function Theorem and the Inverse Function Theorem are valid. For maps that are twice continuously differentiable, these estimates depend upon the magnitude of the first-order derivatives evaluated at the point of interest, and a bound on the second-order derivatives over a region of interest. One of the key contributions of this article is that the estimates presented require minimal numerical computation. In particular, these estimates are arrived at without any intermediate optimization procedures. We then present three applications in optimization and systems and control theory where the computation of such bounds turns out to be important. First, in electrical networks, the power flow operations can be written as Quadratically Constrained Quadratic Programs (QCQPs), and we utilize our bounds to compute the size of permissible power variations to ensure stable operations of the power system network. Second, the robustness margin of positive definite solutions to the Algebraic Riccati Equation (frequently encountered in control problems) subject to perturbations in the system matrices are computed with the aid of our bounds. Finally, we employ these bounds to provide quantitative estimates of the size of the domains for feedback linearization of discrete-time control systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源