论文标题
RSTGEN:将精细颗粒的可解释控制插入长效的生成器
RSTGen: Imbuing Fine-Grained Interpretable Control into Long-FormText Generators
论文作者
论文摘要
在本文中,我们研究了改善语言模型产生的长篇文本的凝聚力和连贯性的任务。为此,我们提出了RSTGEN,该框架利用修辞学理论(RST)(一种经典的语言理论)来控制生成文本的话语结构,语义和主题。首先,我们展示了模型在开放生成评估中控制结构性话语和语义特征的能力。然后,我们实验了两个具有挑战性的长期文本任务的论证产生和故事产生。使用自动指标和与人类评估高相关的度量的评估表明,我们的模型对现有模型的竞争性能,同时比替代方法提供了更大的对生成文本的控制。
In this paper, we study the task of improving the cohesion and coherence of long-form text generated by language models. To this end, we propose RSTGen, a framework that utilises Rhetorical Structure Theory (RST), a classical language theory, to control the discourse structure, semantics and topics of generated text. Firstly, we demonstrate our model's ability to control structural discourse and semantic features of generated text in open generation evaluation. Then we experiment on the two challenging long-form text tasks of argument generation and story generation. Evaluation using automated metrics and a metric with high correlation to human evaluation, shows that our model performs competitively against existing models, while offering significantly more controls over generated text than alternative methods.