论文标题
具有噪音倾斜模块和Denoise框架的CNN,用于高光谱图像分类
A CNN with Noise Inclined Module and Denoise Framework for Hyperspectral Image Classification
论文作者
论文摘要
深度神经网络已成功应用于高光谱图像分类。但是,大多数先前的作品都采用了一般的深层体系结构,同时忽略了高光谱图像的内在结构,例如物理噪声产生。这将使这些深层模型无法产生歧视性特征并提供令人印象深刻的分类性能。为了利用此类内在信息,这项工作开发了一个新颖的深度学习框架,该框架倾斜的模块和Denoise框架进行了高光谱图像分类。首先,我们使用物理噪声模型对高光谱图像的光谱特征进行建模,以描述每个类别的高层内方差,并在图像中不同类之间进行巨大的重叠。然后,开发一个倾斜的模块来捕获每个对象内的物理噪声,然后遵循Denoise框架以从对象中删除此类噪声。最后,开发了具有噪声倾斜模块和Denoise框架的CNN,以获得判别特征,并提供了高光谱图像的良好分类性能。实验是在两个常用的现实世界数据集上进行的,实验结果表明该方法的有效性。可以在https://github.com/shendu-sw/noise-physical-framework上访问提出的方法和其他比较方法的实现。
Deep Neural Networks have been successfully applied in hyperspectral image classification. However, most of prior works adopt general deep architectures while ignore the intrinsic structure of the hyperspectral image, such as the physical noise generation. This would make these deep models unable to generate discriminative features and provide impressive classification performance. To leverage such intrinsic information, this work develops a novel deep learning framework with the noise inclined module and denoise framework for hyperspectral image classification. First, we model the spectral signature of hyperspectral image with the physical noise model to describe the high intraclass variance of each class and great overlapping between different classes in the image. Then, a noise inclined module is developed to capture the physical noise within each object and a denoise framework is then followed to remove such noise from the object. Finally, the CNN with noise inclined module and the denoise framework is developed to obtain discriminative features and provides good classification performance of hyperspectral image. Experiments are conducted over two commonly used real-world datasets and the experimental results show the effectiveness of the proposed method. The implementation of the proposed method and other compared methods could be accessed at https://github.com/shendu-sw/noise-physical-framework.