论文标题

威尔逊表面的量子场理论表示:i更高的共同轨道理论

Quantum field theoretic representation of Wilson surfaces: I higher coadjoint orbit theory

论文作者

Zucchini, Roberto

论文摘要

这是一系列两篇论文中的第一篇,该论文专门针对严格的高规格理论中威尔逊表面的分区函数实现。基于派生的几何框架提出了Kirillov-Kostant-Souriau的更高版本,这表明了其在4维更高的Chern-Simons理论中的有用性。提出了派生的共同连接轨道的原始概念。构建了常规派生轨道上的统一线束和泊松结构的理论。然后确定Bohr-Sommerfeld量化条件的适当得出的对应物。提出了一种派生的临时化版本。提出了限制的困难,以与其他更高量化的方法共享,并可能提出了一种可能的方式 - out。我们详细说明的理论为伴侣论文的现场理论结构提供了几何基础。

This is the first of a series of two papers devoted to the partition function realization of Wilson surfaces in strict higher gauge theory. A higher version of the Kirillov-Kostant-Souriau theory of coadjoint orbits is presented based on the derived geometric framework, which has shown its usefulness in 4--dimensional higher Chern--Simons theory. An original notion of derived coadjoint orbit is put forward. A theory of derived unitary line bundles and Poisson structures on regular derived orbits is constructed. The proper derived counterpart of the Bohr--Sommerfeld quantization condition is then identified. A version of derived prequantization is proposed. The difficulties hindering a full quantization, shared with other approaches to higher quantization, are pinpointed and a possible way--out is suggested. The theory we elaborate provide the geometric underpinning for the field theoretic constructions of the companion paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源