论文标题

量子Kerr学习

Quantum Kerr Learning

论文作者

Liu, Junyu, Zhong, Changchun, Otten, Matthew, Chandra, Anirban, Cortes, Cristian L., Ti, Chaoyang, Gray, Stephen K, Han, Xu

论文摘要

量子机学习是一个快速发展的研究领域,可以促进量子计算的重要应用,并显着影响数据驱动的科学。在我们的工作中,基于复杂性理论和物理学的各种论点,我们证明,在处理基于内核的方法时,单个Kerr模式可以提供一些“量子增强”。使用内核特性,神经切线核理论,Kerr非线性的一阶扰动理论以及非扰动数值模拟,我们表明,量子增强可能会在收敛时间和概括性误差方面发生。此外,我们对如何考虑如何考虑更高维度的输入数据有明确的指示。最后,我们提出了一个实验协议,我们根据电路QED称为\ emph {量子kerr学习}。

Quantum machine learning is a rapidly evolving field of research that could facilitate important applications for quantum computing and also significantly impact data-driven sciences. In our work, based on various arguments from complexity theory and physics, we demonstrate that a single Kerr mode can provide some "quantum enhancements" when dealing with kernel-based methods. Using kernel properties, neural tangent kernel theory, first-order perturbation theory of the Kerr non-linearity, and non-perturbative numerical simulations, we show that quantum enhancements could happen in terms of convergence time and generalization error. Furthermore, we make explicit indications on how higher-dimensional input data could be considered. Finally, we propose an experimental protocol, that we call \emph{quantum Kerr learning}, based on circuit QED.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源