论文标题

因果影响与回声状态网络中其基础网络结构的脱致

Causal Influences Decouple From Their Underlying Network Structure In Echo State Networks

论文作者

Fakhar, Kayson, Hadaeghi, Fatemeh, Hilgetag, Claus C.

论文摘要

回声状态网络(ESN)是多功能的复发性神经网络模型,其中隐藏层在训练过程中保持不变。该静态骨干的节点之间的相互作用产生了给定刺激的各种表示,这些表示是通过读出的机制来实现解决给定任务所需的计算的多种表示。 ESN是可访问神经元电路的模型,因为它们的训练相对便宜。因此,ESN对研究神经结构,功能和行为之间关系的神经科学家变得有吸引力。例如,尚不清楚大脑网络的独特连通性模式如何支持其节点之间的有效相互作用以及这些相互作用模式如何产生计算。为了解决这个问题,我们采用了具有生物学启发的结构的ESN,并使用了系统的多站点病变框架来量化每个节点对网络输出的因果贡献,从而提供了网络结构和行为之间的因果关系。然后,我们专注于结构功能关系,并使用相同的病变框架分解了每个节点对所有其他节点的因果影响。我们发现,在很大程度上,无论网络的基本结构如何,都在正确设计的ESN相互作用中的节点。但是,在具有相同拓扑和非最佳参数集的网络中,基础连接模式决定了节点相互作用。我们的结果表明,ESN中的因果结构 - 功能关系可以分解为两个组成部分,即直接和间接相互作用。前者基于依赖结构联系的影响。后者描述了通过其他中间节点之间任何两个节点之间的有效通信。这些广泛分布的间接相互作用可能对ESN的有效性能至关重要。

Echo State Networks (ESN) are versatile recurrent neural network models in which the hidden layer remains unaltered during training. Interactions among nodes of this static backbone produce diverse representations of the given stimuli that are harnessed by a read-out mechanism to perform computations needed for solving a given task. ESNs are accessible models of neuronal circuits, since they are relatively inexpensive to train. Therefore, ESNs have become attractive for neuroscientists studying the relationship between neural structure, function, and behavior. For instance, it is not yet clear how distinctive connectivity patterns of brain networks support effective interactions among their nodes and how these patterns of interactions give rise to computation. To address this question, we employed an ESN with a biologically inspired structure and used a systematic multi-site lesioning framework to quantify the causal contribution of each node to the network's output, thus providing a causal link between network structure and behavior. We then focused on the structure-function relationship and decomposed the causal influence of each node on all other nodes, using the same lesioning framework. We found that nodes in a properly engineered ESN interact largely irrespective of the network's underlying structure. However, in a network with the same topology and a non-optimal parameter set, the underlying connectivity patterns determine the node interactions. Our results suggest that causal structure-function relations in ESNs can be decomposed into two components, direct and indirect interactions. The former are based on influences relying on structural connections. The latter describe the effective communication between any two nodes through other intermediate nodes. These widely distributed indirect interactions may crucially contribute to the efficient performance of ESNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源