论文标题

用于尖峰分类的自适应对比度学习模型

An Adaptive Contrastive Learning Model for Spike Sorting

论文作者

Qian, Lang, Zheng, Shengjie, Deng, Chunshan, Yang, Cheng, Li, Xiaojian

论文摘要

脑部计算机界面(BCIS)是电子设备直接与大脑通信的方式。对于大多数医学型脑部计算机界面任务,多个神经元或局部场电位的活性足以解码。但是对于神经科学研究中使用的BCIS,将单个神经元的活性分开很重要。随着大规模硅技术的发展和探测通道的越来越多,人为的解释和标记尖峰变得越来越不切实际。在本文中,我们提出了一个新颖的建模框架:自适应对比学习模型,该模型通过基于最大化相互信息损失函数作为理论基础,通过对比度学习从峰值学习表示表示。基于以下事实:具有相似特征的数据共享相同的标签,无论是多分类还是二进制分类。通过这种理论支持,我们将多分类问题简化为多个二进制分类,从而提高了准确性和运行时效率。此外,我们还为峰值引入了一系列增强功能,同时解决了由于重叠的尖峰而影响分类效应的问题。

Brain-computer interfaces (BCIs), is ways for electronic devices to communicate directly with the brain. For most medical-type brain-computer interface tasks, the activity of multiple units of neurons or local field potentials is sufficient for decoding. But for BCIs used in neuroscience research, it is important to separate out the activity of individual neurons. With the development of large-scale silicon technology and the increasing number of probe channels, artificially interpreting and labeling spikes is becoming increasingly impractical. In this paper, we propose a novel modeling framework: Adaptive Contrastive Learning Model that learns representations from spikes through contrastive learning based on the maximizing mutual information loss function as a theoretical basis. Based on the fact that data with similar features share the same labels whether they are multi-classified or binary-classified. With this theoretical support, we simplify the multi-classification problem into multiple binary-classification, improving both the accuracy and the runtime efficiency. Moreover, we also introduce a series of enhancements for the spikes, while solving the problem that the classification effect is affected because of the overlapping spikes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源