论文标题
从非马克维亚耗散到量子纳米版本的时空控制
From Non-Markovian Dissipation to Spatiotemporal Control of Quantum Nanodevices
论文作者
论文摘要
利用量子效应的纳米版本是未来量子技术(QT)的至关重要的要素,但是由于局部“环境”相互作用引起的破坏性,其现实世界的性能受到了强烈的限制。随着设备变得越来越复杂,即包含多个功能单元,“本地”环境开始重叠,从而产生了在新的时间和长度尺度上产生环境介导的破坏现象的可能性。这种复杂且固有的非马克维亚动力学可能会带来扩展QT的挑战,但另一方面,环境转移“信号”和能量的能力也可能使组成过程的复杂时空协调能力,如生物学纳米机器中,例如酶促的蛋白质和照相蛋白。利用数值确切的许多身体方法(张量网络),我们研究了一个完全量子模型,该模型使我们能够探索传播环境动态如何激发和指导空间远程,非交互式量子系统的演变。我们展示了如何远程收获耗散到环境中的能量以创建瞬态激发/反应性状态,并确定由系统激发触发的重组如何在定性和可逆地改变“功能性”量子系统的“下游”动力学。通过访问完整的系统环境波函数,我们阐明了这些现象的基础微观过程,从而提供了有关如何利用它们用于节能量子设备的新见解。
Nanodevices exploiting quantum effects are critically important elements of future quantum technologies (QT), but their real-world performance is strongly limited by decoherence arising from local `environmental' interactions. Compounding this, as devices become more complex, i.e. contain multiple functional units, the `local' environments begin to overlap, creating the possibility of environmentally mediated decoherence phenomena on new time-and-length scales. Such complex and inherently non-Markovian dynamics could present a challenge for scaling up QT, but -- on the other hand -- the ability of environments to transfer `signals' and energy might also enable sophisticated spatiotemporal coordination of inter-component processes, as is suggested to happen in biological nanomachines, like enzymes and photosynthetic proteins. Exploiting numerically exact many body methods (tensor networks) we study a fully quantum model that allows us to explore how propagating environmental dynamics can instigate and direct the evolution of spatially remote, non-interacting quantum systems. We demonstrate how energy dissipated into the environment can be remotely harvested to create transient excited/reactive states, and also identify how reorganisation triggered by system excitation can qualitatively and reversibly alter the `downstream' kinetics of a `functional' quantum system. With access to complete system-environment wave functions, we elucidate the microscopic processes underlying these phenomena, providing new insight into how they could be exploited for energy efficient quantum devices.