论文标题

深度直接判别解码器,用于高维时序数据分析

Deep Direct Discriminative Decoders for High-dimensional Time-series Data Analysis

论文作者

Rezaei, Mohammad R., Popovic, Milos R., Lankarany, Milad, Yousefi, Ali

论文摘要

状态空间模型(SSM)被广泛用于时间序列数据的分析。 SSM依靠对状态和观察过程的明确定义。表征这些过程并不总是容易的,并且当观察到的数据的维度增长或观察到的数据分布与正态分布偏离时,成为建模挑战。在这里,我们提出了用于高维观察过程的SSM的新公式。我们称此解决方案为深直接歧视解码器(D4)。 D4将深层神经网络的表现力和可扩展性带入SSM公式,使我们构建了一种新颖的解决方案,该解决方案通过高维观测信号有效地估算了基本状态过程。我们演示了模拟和真实数据中的D4解决方案,例如Lorenz吸引子,Langevin Dynamics,Random Walk Dynamics和Rat Hippocampus Spiking神经数据,并表明D4的性能比传统的SSM和RNN更好。 D4可以应用于更广泛的时间序列数据,其中很难表征高维观测与潜在潜在过程之间的连接。

The state-space models (SSMs) are widely utilized in the analysis of time-series data. SSMs rely on an explicit definition of the state and observation processes. Characterizing these processes is not always easy and becomes a modeling challenge when the dimension of observed data grows or the observed data distribution deviates from the normal distribution. Here, we propose a new formulation of SSM for high-dimensional observation processes. We call this solution the deep direct discriminative decoder (D4). The D4 brings deep neural networks' expressiveness and scalability to the SSM formulation letting us build a novel solution that efficiently estimates the underlying state processes through high-dimensional observation signal. We demonstrate the D4 solutions in simulated and real data such as Lorenz attractors, Langevin dynamics, random walk dynamics, and rat hippocampus spiking neural data and show that the D4 performs better than traditional SSMs and RNNs. The D4 can be applied to a broader class of time-series data where the connection between high-dimensional observation and the underlying latent process is hard to characterize.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源