论文标题
在3D粘性Boussinesq系统的温度前线的规律性上
On the regularity of temperature fronts for the 3D viscous Boussinesq system
论文作者
论文摘要
我们研究3D粘性Boussinesq方程的温度前端问题。我们证明$ c^{k,γ} $($ k \ geq 1 $,$ 0 <γ<1 $)和$ w^{2,\ iffty} $定期的温度前部沿本地保留,并且在关键空间中的较小条件下在全球保存下保存在全球范围内。特别是,除了在\ cite {ggj20}中给出主要结果的另一个证明之外,我们还将其扩展到更一般的常规补丁类。
We study the temperature front problem for the 3D viscous Boussinesq equation. We prove that the $C^{k,γ}$ ($k\geq 1$, $0<γ< 1$) and $W^{2,\infty}$ regularity of a temperature front is locally preserved along the evolution as well as globally preserved under a smallness condition in a critical space. In particular, beside giving another proof of the main result in \cite{GGJ20}, we also extend it to a more general class of regular patch.