论文标题

IRS辅助MIMO系统的半盲通道和符号估计

Semi-Blind Joint Channel and Symbol Estimation for IRS-Assisted MIMO Systems

论文作者

de Araújo, Gilderlan Tavares, de Almeida, André Lima Férrer, Boyer, Rémy, Fodor, Gábor

论文摘要

智能反射表面(IRS)是第六代无线系统的有前途的技术,实现了智能无线电环境概念。在本文中,我们为IRS辅助多输入的多输出通信提供了一种新颖的基于张量的接收器,该通信能够以半盲的方式共同估计通道和传输数据流。假设具有完全被动的IRS体系结构并在发射器中引入简单的时空编码方案,则可以使用Paratuck Tensor模型有利地构建接收的信号模型,该模型可以看作是并行因子分析和Tucker模型的混合体。利用Paratuck Tensor模型的代数结构,得出了半盲接收器。所提出的接收器基于三线性交替的最小二乘法,迭代估算了两个涉及的 - IRS-基站和用户终端-IRS-communication通道以及发送的符号矩阵。我们讨论可识别性条件,以确保相关信道和符号矩阵的联合半盲恢复,并提出编码和IRS反射矩阵的联合设计以优化接收器性能。对于拟议的半盲接收器,还提供了预期的cramér-rao下限的推导。提出的接收器设计的数值性能评估证实了其优越的性能,从估计通道的归一化平方误差和已达到的符号误差率的角度来看。

Intelligent reflecting surface (IRS) is a promising technology for the 6th generation of wireless systems, realizing the smart radio environment concept. In this paper, we present a novel tensor-based receiver for IRS-assisted multiple-input multiple-output communications capable of jointly estimating the channels and the transmitted data streams in a semi-blind fashion. Assuming a fully passive IRS architecture and introducing a simple space-time coding scheme at the transmitter, the received signal model can be advantageously built using the PARATUCK tensor model, which can be seen as a hybrid of parallel factor analysis and Tucker models. Exploiting the algebraic structure of the PARATUCK tensor model, a semi-blind receiver is derived. The proposed receiver is based on a trilinear alternating least squares method that iteratively estimates the two involved - IRS- base station and user terminal-IRS-communication channels and the transmitted symbol matrix. We discuss identifiability conditions that ensure the joint semi-blind recovery of the involved channel and symbol matrices, and propose a joint design of the coding and IRS reflection matrices to optimize the receiver performance. For the proposed semi-blind receiver, the derivation of the expected Cramér-Rao lower bound is also provided. A numerical performance evaluation of the proposed receiver design corroborates its superior performance in terms of the normalized mean squared error of the estimated channels and the achieved symbol error rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源