论文标题

压缩合奏量化了美学复杂性和视觉艺术的演变

Compression ensembles quantify aesthetic complexity and the evolution of visual art

论文作者

Karjus, Andres, Solà, Mar Canet, Ohm, Tillmann, Ahnert, Sebastian E., Schich, Maximilian

论文摘要

视觉美学和复杂性的量化具有悠久的历史,后者先前通过使用压缩算法进行了操作。在这里,我们将压缩方法推广并扩展到简单的复杂性度量之外,以量化历史和当代视觉媒体中的算法距离。提出的“集合”方法通过压缩了给定输入图像的大量转换版本,从而导致相关压缩比的向量。这种方法比其他基于压缩的算法距离更有效,并且特别适合对视觉伪像的定量分析,因为从最广义上讲,人类的创造过程可以理解为算法。与使用机器学习的可比图像嵌入方法不同,我们的方法可以通过转换完全解释。我们证明了该方法在认知上是合理的,并且可以通过对人类复杂性判断以及作者身份和风格的自动检测任务进行评估,并适合目的。我们展示了如何使用该方法来揭示和量化艺术历史数据中的趋势,无论是在几个世纪的规模和快速发展的当代NFT艺术市场中。我们进一步量化了时间的相似之处,以使在有记录的主流之外的艺术家与深深嵌入时代人的主流主义者的歧视。最后,我们注意到,压缩集合构成了视觉家族相似的概念的定量表示,因为不同的维度集对应于共享的视觉特征,否则很难固定。我们的方法为视觉艺术,算法图像分析和定量美学的研究提供了新的观点。

The quantification of visual aesthetics and complexity have a long history, the latter previously operationalized via the application of compression algorithms. Here we generalize and extend the compression approach beyond simple complexity measures to quantify algorithmic distance in historical and contemporary visual media. The proposed "ensemble" approach works by compressing a large number of transformed versions of a given input image, resulting in a vector of associated compression ratios. This approach is more efficient than other compression-based algorithmic distances, and is particularly suited for the quantitative analysis of visual artifacts, because human creative processes can be understood as algorithms in the broadest sense. Unlike comparable image embedding methods using machine learning, our approach is fully explainable through the transformations. We demonstrate that the method is cognitively plausible and fit for purpose by evaluating it against human complexity judgments, and on automated detection tasks of authorship and style. We show how the approach can be used to reveal and quantify trends in art historical data, both on the scale of centuries and in rapidly evolving contemporary NFT art markets. We further quantify temporal resemblance to disambiguate artists outside the documented mainstream from those who are deeply embedded in Zeitgeist. Finally, we note that compression ensembles constitute a quantitative representation of the concept of visual family resemblance, as distinct sets of dimensions correspond to shared visual characteristics otherwise hard to pin down. Our approach provides a new perspective for the study of visual art, algorithmic image analysis, and quantitative aesthetics more generally.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源