论文标题

Z和其他戒指的Albert代数

Albert algebras over Z and other rings

论文作者

Garibaldi, Skip, Petersson, Holger P., Racine, Michel L.

论文摘要

Albert代数是一种特定的Jordan代数,是交换性非缔合代数之间自然具有区别的对象,并且在简单的$ f_4 $,$ e_6 $或$ e_7 $的简单仿射组方案的背景下也自然出现。我们通过任意的基本环$ r $研究这些对象,特别关注整数的情况。在这种特殊情况下,在文献中,我们证明了与2和3不同的特征领域的特殊情况。

Albert algebras, a specific kind of Jordan algebra, are naturally distinguished objects among commutative non-associative algebras and also arise naturally in the context of simple affine group schemes of type $F_4$, $E_6$, or $E_7$. We study these objects over an arbitrary base ring $R$, with particular attention to the case of the integers. We prove in this generality results previously in the literature in the special case where $R$ is a field of characteristic different from 2 and 3.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源