论文标题

具有有限度的模型因子

Modulo factors with bounded degrees

论文作者

Hasanvand, Morteza

论文摘要

令$ g $为带有两部分$(x,y)$的两项图,让$ k $为正整数,让$ f:v(g)\ rightarrow \ rightarrow \ { - 1,\ ldots,k-2 \} $是$ \ sum_ {v \ in x} f(v)f(v)f(v), \ stackrel {k} {\ equiv} \ sum_ {v \ in y} f(v)$。在本文中,我们表明,如果$ g $本质上是$(3K-3)$ - 边缘连接,并且对于每个顶点$ v $,$ d_g(v)\ ge 2k-1+f(v)$ $ \ lfloor \ frac {d_g(v)} {2} \ rfloor-(k-1)\ le d_ {h}(h}(v)\ le \ le \ lceil \ lceil \ frac {d_g(v)} $ g $具有因子$ h $,以便每个顶点$ v $,$ d_h(v)\ in \ {f(v),f(v)+k \} $。最后,我们表明,每$(4K-1)$ - 边缘连接基本上是$(6K-7)$ - 边缘连接的图,可以承认一个两分因子,其学位是正面的,可以由$ k $排除。

Let $G$ be a bipartite graph with bipartition $(X,Y)$, let $k$ be a positive integer, and let $f:V(G)\rightarrow \{-1,\ldots, k-2\}$ be a mapping with $\sum_{v\in X}f(v) \stackrel{k}{\equiv}\sum_{v\in Y}f(v)$. In this paper, we show that if $G$ is essentially $(3k-3)$-edge-connected and for each vertex $v$, $d_G(v)\ge 2k-1+f(v)$, then it admits a factor $H$ such that for each vertex $v$, $d_H(v)\stackrel{k}{\equiv} f(v)$, and $$\lfloor\frac{d_G(v)}{2}\rfloor-(k-1)\le d_{H}(v)\le \lceil\frac{d_G(v)}{2}\rceil+k-1.$$ Next, we generalize this result to general graphs and derive sufficient conditions for a highly edge-connected general graph $G$ to have a factor $H$ such that for each vertex $v$, $d_H(v)\in \{f(v),f(v)+k\}$. Finally, we show that every $(4k-1)$-edge-connected essentially $(6k-7)$-edge-connected graph admits a bipartite factor whose degrees are positive and divisible by $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源