论文标题

较高的几何捆关系理论

Higher geometric sheaf theories

论文作者

Stenzel, Raffael

论文摘要

我们介绍了基本$ \ infty $ -scategory $ \ mathcal {c} $中较高覆盖图的概念。 $ \ Mathcal {C} $中较高覆盖图的理论将显示,以统一的方式从$ \ infty $分类文献中恢复已知的各种下降条件。实际上,较高的覆盖图总是将我们称为基础$ \ Mathcal {C} $的结构化colimit预访问。因此,它总是在$ \ Mathcal {c} $上定义一个亚典型的捆式理论,并且每当$ \ mathcal {c} $都会有回调时,确实定义了规范。每当$ \ Mathcal {c} $都是无限的,本身。我们证明这种本地化通常是不平凡的。例如,每个$ \ infty $ -topos都是自身较高的几何束带的理论,但是根据它的无限固定捆绑理论通常严格较大。因此,较高的几何滑轮的特征是极限保存特性,通常不被经典的捆圆条件捕获。我们定义了一个$ \ infty $ - 类别$ \ infty $ - 类别的类别,并表明(与$ \ infty $ the $ \ infty $ toposes的相反)完全忠实地嵌入其中。我们表明,较高的$κ$ - 几何分支理论在较高的$κ$ - 几何$ \ infty $ - 类别上定义了它产生的免费$ \ infty $ -TOPO,因此它忠实地将Lurie概括为lurie对$ \ fy iffty $ topos的``sheaf''的定义。

We introduce the notion of a higher covering diagram in a base $\infty$-category $\mathcal{C}$. The theory of higher covering diagrams in $\mathcal{C}$ will be shown to recover various descent conditions known from the $\infty$-categorical literature in a uniform manner. In fact, higher covering diagrams always assemble to what we refer to as a structured colimit pre-topology on the base $\mathcal{C}$. It hence always defines a sub-canonical sheaf theory over $\mathcal{C}$, and indeed defines the canonical such whenever $\mathcal{C}$ has pullbacks. This ``higher geometric'' sheaf theory will be shown to differ from the usual infinitary-coherent sheaf theory by a cotopological localization whenever $\mathcal{C}$ is infinitary-coherent itself. We prove that this localization is generally non-trivial. For instance, every $\infty$-topos is the theory of higher geometric sheaves over itself, but the according infinitary-coherent sheaf theory over it is generally strictly larger. The higher geometric sheaves are hence characterized by a limit preservation property that is generally not captured by the classical sheaf condition. We define an $\infty$-category of higher geometric $\infty$-categories, and show that the (opposite of the) $\infty$-category of $\infty$-toposes embeds fully faithfully therein. We show that the higher $κ$-geometric sheaf theory on a higher $κ$-geometric $\infty$-category defines the free $\infty$-topos generated by it, and consequently that it faithfully generalizes Lurie's definition of a ``sheaf'' over an $\infty$-topos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源