论文标题

基于距离的量子测量集的资源量化

Distance-based resource quantification for sets of quantum measurements

论文作者

Tendick, Lucas, Kliesch, Martin, Kampermann, Hermann, Bruß, Dagmar

论文摘要

量子系统为某些量子信息处理任务提供的优势比其经典对应物提供的优势可以在资源理论的一般框架中进行量化。量子状态之间的某些距离功能已成功地用于量化纠缠和连贯性等资源。也许令人惊讶的是,这种基于距离的方法尚未被用于研究量子测量的资源,而其他几何量化量则使用。在这里,我们定义了量子测量集之间的距离函数,并表明它们自然诱导了用于凸的测量资源理论的资源单调。通过专注于基于钻石规范的距离,我们建立了测量资源的层次结构,并在任何一组测量值的不兼容性上得出了分析界限。我们表明,这些界限对于基于相互无偏基的某些投影测量值很紧,并确定在我们的资源单调量子量化时不同测量资源获得相同值的方案。我们的结果提供了一个一般框架,可以比较基于距离的资源以进行一组测量值,并使我们能够获得钟形实验的限制。

The advantage that quantum systems provide for certain quantum information processing tasks over their classical counterparts can be quantified within the general framework of resource theories. Certain distance functions between quantum states have successfully been used to quantify resources like entanglement and coherence. Perhaps surprisingly, such a distance-based approach has not been adopted to study resources of quantum measurements, where other geometric quantifiers are used instead. Here, we define distance functions between sets of quantum measurements and show that they naturally induce resource monotones for convex resource theories of measurements. By focusing on a distance based on the diamond norm, we establish a hierarchy of measurement resources and derive analytical bounds on the incompatibility of any set of measurements. We show that these bounds are tight for certain projective measurements based on mutually unbiased bases and identify scenarios where different measurement resources attain the same value when quantified by our resource monotone. Our results provide a general framework to compare distance-based resources for sets of measurements and allow us to obtain limitations on Bell-type experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源