论文标题

计算LRS在混合物中的mRNA分析数据中存在体液

Calculating LRs for presence of body fluids from mRNA assay data in mixtures

论文作者

Ypma, R. J. F., Wijk, P. A. Maaskant-van, Gill, R. D., Sjerps, M., Berge, M. van den

论文摘要

Messenger RNA(mRNA)分析可以鉴定出污渍中存在的体液,从而提供有关犯罪现场可能发生哪些活动的信息。为了解决此类识别的不确定性,最近的工作集中在设计统计模型上,以允许有关体液存在的概率陈述。实际采用的一个主要障碍是,证据污渍可能包含多种体液,并且当前模型不适合分析此类混合物。在这里,我们构建了一个可能处理混合物的可能性比率(LR)系统,考虑到假设H1:样品包含至少一种感兴趣的体液(以及可能其他体液); H2:样品中不包含感兴趣的体液(但可能是其他体液)。因此,LR系统为MRNA谱和感兴趣的体液组合的任何组合都输出了LR值。该计算基于通过实际单人体流体mRNA谱的硅混合而获得的增强数据集。这些数字混合物用于构建概率分类方法(“多标签分类器”)。随后通过校准将产生的概率用于计算LR。我们从机器学习领域,预处理数据和多标签策略中的方法中测试了一系列不同的分类方法,以在计算机混合测试数据中进行性能。此外,我们研究了它们对体液背景水平的不同假设的鲁棒性。我们发现逻辑回归起作用以及更灵活的分类器,但显示出更高的鲁棒性和更好的解释性。我们在实验室生成的混合物样品上测试了该系统的性能,并在案例工作中讨论实际用法。

Messenger RNA (mRNA) profiling can identify body fluids present in a stain, yielding information on what activities could have taken place at a crime scene. To account for uncertainty in such identifications, recent work has focused on devising statistical models to allow for probabilistic statements on the presence of body fluids. A major hurdle for practical adoption is that evidentiary stains are likely to contain more than one body fluid and current models are ill-suited to analyse such mixtures. Here, we construct a likelihood ratio (LR) system that can handle mixtures, considering the hypotheses H1: the sample contains at least one of the body fluids of interest (and possibly other body fluids); H2: the sample contains none of the body fluids of interest (but possibly other body fluids). Thus, the LR-system outputs an LR-value for any combination of mRNA profile and set of body fluids of interest that are given as input. The calculation is based on an augmented dataset obtained by in silico mixing of real single body fluid mRNA profiles. These digital mixtures are used to construct a probabilistic classification method (a 'multi-label classifier'). The probabilities produced are subsequently used to calculate an LR, via calibration. We test a range of different classification methods from the field of machine learning, ways to preprocess the data and multi-label strategies for their performance on in silico mixed test data. Furthermore, we study their robustness to different assumptions on background levels of the body fluids. We find logistic regression works as well as more flexible classifiers, but shows higher robustness and better explainability. We test the system's performance on lab-generated mixture samples, and discuss practical usage in case work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源