论文标题
模拟移动网格上的冷剪切流
Simulating cold shear flows on a moving mesh
论文作者
论文摘要
旋转支持的冷,气态磁盘在天体物理学中无处不在,并出现在多种系统中,例如原行星磁盘,黑洞周围的积聚磁盘或大型螺旋星系。在数值模拟中,在数值模拟中准确捕获气体动力学的声音速度较低,这是由于与气体的大容量速度,完整磁盘模型的分辨率局限性相比,数值噪声可以轻松地促进流体不稳定性的虚假增长,即使不是充分抑制,实际上是在这种情况下,就可以降低了这种不限制(例如,例如在这种情况下,就可以降低了元素的差异(例如,在这种情况下的差异(例如,在这种情况下),这种差异很容易降低(例如,在这种情况下都存在这种不限制的元素(例如,在这种情况下,就可以降低了这种不限制的元素(例如,在此类差异中,都具有元素的启动(例如,仔细研究)。在这里,我们在移动网格代码中实现了所谓的剪切盒近似,以促进在差异旋转磁盘的本地区域中实现高分辨率并解决这些问题。尽管我们的新方法在剪切盒边界上提供了明显的翻译不变性并提供了连续的局部适应性,但我们证明了Arepo的非结构化网格在代码的默认版本中引入了不需要的“网格噪声”级别。我们表明,可以通过在网格边界上的通量的高阶集成来纠正这一点。借助我们的新技术,我们获得了高度准确的结果,用于剪切盒计算磁旋转不稳定性,而磁性旋转不稳定性优于其他拉格朗日技术。这些改进对于具有强剪切流的代码的其他应用程序也很有价值。
Rotationally supported, cold, gaseous disks are ubiquitous in astrophysics and appear in a diverse set of systems, such as protoplanetary disks, accretion disks around black holes, or large spiral galaxies. Capturing the gas dynamics accurately in these systems is challenging in numerical simulations due to the low sound speed compared to the bulk velocity of the gas, the resolution limitations of full disk models, and the fact that numerical noise can easily source spurious growth of fluid instabilities if not suppressed sufficiently well, negatively interfering with real physical instabilities present in such disks (like the magneto-rotational instability). Here we implement the so-called shearing-box approximation in the moving-mesh code AREPO in order to facilitate achieving high resolution in local regions of differentially rotating disks and to address these problems. While our new approach offers manifest translational invariance across the shearing-box boundaries and offers continuous local adaptivity, we demonstrate that the unstructured mesh of AREPO introduces unwanted levels of "grid-noise" in the default version of the code. We show that this can be rectified by high-order integrations of the flux over mesh boundaries. With our new techniques we obtain highly accurate results for shearing-box calculations of the magneto-rotational instability that are superior to other Lagrangian techniques. These improvements are also of value for other applications of the code that feature strong shear flows.