论文标题

基于个人护理决策步骤发展患者驱动的人工智能

Developing patient-driven artificial intelligence based on personal rankings of care decision making steps

论文作者

Lahti, Lauri

论文摘要

我们提出并在实验上激发了一种新的方法,以基于人工智能的个人排名来支持医疗保健中的决策过程,该方法基于您的方法,可以通过我们的方法论,问卷数据及其统计模式来确定的。我们的纵向定量横截面三阶段研究收集了有关437个关于李克特量表上有关医疗保健情况的表达陈述的自我评价。在2020年6月1日至2021年6月29日之间的在线受访者是从芬兰患者和残疾人组织,其他与健康相关的组织和专业人士以及教育机构(n = 1075)招募的。借助Kruskal-Wallis测试,Wilcoxon Rank-sum测试(即Mann-Whitney U测试),Wilcoxon Rank-sum成对测试,Welch的T检验和组测试之间的单向方差分析(ANOVA),我们在统计学上确定了基于每个背景问题的统计上有显着差异的评分及其表达式差异及其表达式的差异。等级排名的后来重新排序的频率显示了与各种解释任务实体,解释维度和受访者分组的评级有关的依赖项。我们的方法,问卷数据及其统计模式可以通过自我评估的表达方式分析医疗保健情况下的决策步骤及其链接,团聚和分支在个性化护理路径的知识实体中的表示。我们的结果支持建立人工智能解决方案,以满足患者在护理方面的需求。

We propose and experimentally motivate a new methodology to support decision-making processes in healthcare with artificial intelligence based on personal rankings of care decision making steps that can be identified with our methodology, questionnaire data and its statistical patterns. Our longitudinal quantitative cross-sectional three-stage study gathered self-ratings for 437 expression statements concerning healthcare situations on Likert scales in respect to "the need for help", "the advancement of health", "the hopefulness", "the indication of compassion" and "the health condition", and 45 answers about the person's demographics, health and wellbeing, also the duration of giving answers. Online respondents between 1 June 2020 and 29 June 2021 were recruited from Finnish patient and disabled people's organizations, other health-related organizations and professionals, and educational institutions (n=1075). With Kruskal-Wallis test, Wilcoxon rank-sum test (i.e., Mann-Whitney U test), Wilcoxon rank-sum pairwise test, Welch's t test and one-way analysis of variance (ANOVA) between groups test we identified statistically significant differences of ratings and their durations for each expression statement in respect to respondent groupings based on the answer values of each background question. Frequencies of the later reordering of rating rankings showed dependencies with ratings given earlier in respect to various interpretation task entities, interpretation dimensions and respondent groupings. Our methodology, questionnaire data and its statistical patterns enable analyzing with self-rated expression statements the representations of decision making steps in healthcare situations and their chaining, agglomeration and branching in knowledge entities of personalized care paths. Our results support building artificial intelligence solutions to address the patient's needs concerning care.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源