论文标题

在图上存在解决方案的解决方案

Existence of solutions to Chern-Simons-Higgs equations on graphs

论文作者

Hou, Songbo, Sun, Jiamin

论文摘要

令$ g =(v,e)$为有限图。我们考虑存在通用的Chern-Simons-higgs方程的解决方案$Δu=-λe^{g(u)} \ left(e^{g(u)} -1 \ right)^2+4π\ sum \ limits_ $ g(u)$是$ u = f(\ upsilon)= 1+\ upsilon-e^{\ upsilon} $( - \ infty,0] $; $ n $是一个正整数;是$ P_J $的Dirac Delta质量。 $Δu=λe^{u}(e^{u} -1)+4π\ sum \ limits_ {j = 1}^{n}Δ_{p_j} $ g $时,$λ$当$λ$进行关键值$λ_c$并完成huang,yong yong yong yong yong y的关键值$λ_c$时。 613-621(2020))。

Let $G=(V,E)$ be a finite graph. We consider the existence of solutions to a generalized Chern-Simons-Higgs equation $$ Δu=-λe^{g(u)}\left( e^{g(u)}-1\right)^2+4π\sum\limits_{j=1}^{N}δ_{p_j} $$ on $G$, where $λ$ is a positive constant; $g(u)$ is the inverse function of $u=f(\upsilon)=1+\upsilon-e^{\upsilon}$ on $(-\infty, 0]$; $N$ is a positive integer; $p_1, p_2, \cdot\cdot\cdot, p_N$ are distinct vertices of $V$ and $δ_{p_j}$ is the Dirac delta mass at $p_j$. We prove that there is critical value $λ_c$ such that the generalized Chern-Simons-Higgs equation has a solution if and only if $λ\geq λ_c$ . We also prove the existence of solutions to the Chern-Simons-Higgs equation $$ Δu=λe^{u}(e^{u}-1)+4π\sum\limits_{j=1}^{N}δ_{p_j} $$ on $G$ when $λ$ takes the critical value $λ_c$ and this completes the results of An Huang, Yong Lin and Shing-Tung Yau (Commun. Math. Phys. 377, 613-621 (2020)).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源