论文标题

关于高斯过程回归无法最佳学习组成功能

On the inability of Gaussian process regression to optimally learn compositional functions

论文作者

Giordano, Matteo, Ray, Kolyan, Schmidt-Hieber, Johannes

论文摘要

我们严格地证明,如果目标函数具有组成结构,那么深层过程先验可以超越高斯工艺先验。为此,我们研究了连续回归模型中高斯过程回归后收缩率的信息理论下限。我们表明,如果True函数是通用的加性函数,那么基于任何平均零高斯过程的后验只能以严格慢的速率恢复真相,而该速率比最小值速率慢了,而最小值速率是样本尺寸$ n $的多项式次优的因素。

We rigorously prove that deep Gaussian process priors can outperform Gaussian process priors if the target function has a compositional structure. To this end, we study information-theoretic lower bounds for posterior contraction rates for Gaussian process regression in a continuous regression model. We show that if the true function is a generalized additive function, then the posterior based on any mean-zero Gaussian process can only recover the truth at a rate that is strictly slower than the minimax rate by a factor that is polynomially suboptimal in the sample size $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源