论文标题

最佳色彩绑定($ p_2+ p_3 $,$ \ bar {p_2+ p_3} $) - 免费图形

Optimal chromatic bound for ($P_2+P_3$, $\bar{P_2+ P_3}$)-free graphs

论文作者

Char, Arnab, Karthick, T.

论文摘要

对于图$ g $,令$χ(g)$($ω(g)$)表示其色度(集团)编号。 $ p_2+p_3 $是通过取出两种vertex路径$ p_2 $和三个vertex路径$ p_3 $的不相交联合获得的图表。 $ \ bar {p_2+p_3} $是$ p_2+p_3 $的补充图。在本文中,我们研究了($ p_2+p_3 $,$ \ bar {p_2+p_3} $) - 免费图形,并表明每个这样的图形$ g $带有$ω(g)\ geq 3 $满足$χ(g) \ rfloor-1 \} $。而且,界限很紧。确实,对于{\ mathbb n} $和$ k \ geq 3 $中的任何$ k \,都有一个($ p_2+p_3 $,$ \ bar {p_2+p_3} $) - 免费图形$ g $,使得$ω(g)= k $和$ c $ and $ c $和ucm c $ c $ c $ c $ c $ c $ c $ c \ cA) \ rfloor-1 \} $。

For a graph $G$, let $χ(G)$ ($ω(G)$) denote its chromatic (clique) number. A $P_2+P_3$ is the graph obtained by taking the disjoint union of a two-vertex path $P_2$ and a three-vertex path $P_3$. A $\bar{P_2+P_3}$ is the complement graph of a $P_2+P_3$. In this paper, we study the class of ($P_2+P_3$, $\bar{P_2+P_3}$)-free graphs and show that every such graph $G$ with $ω(G)\geq 3$ satisfies $χ(G)\leq \max \{ω(G)+3, \lfloor\frac{3}{2} ω(G) \rfloor-1 \}$. Moreover, the bound is tight. Indeed, for any $k\in {\mathbb N}$ and $k\geq 3$, there is a ($P_2+P_3$, $\bar{P_2+P_3}$)-free graph $G$ such that $ω(G)=k$ and $χ(G)=\max\{k+3, \lfloor\frac{3}{2} k \rfloor-1 \}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源