论文标题
系统构建Painlevé-Type的非自主哈密顿方程。 iii。量化
Systematic construction of non-autonomous Hamiltonian equations of Painlevé-type. III. Quantization
论文作者
论文摘要
这是我们系列文章中的第三篇文章,探讨了Stäckel-Type和Painlevé-Type的动态系统之间的联系。在本文中,我们介绍了一种对最小量化的准汉密尔顿人变形的方法,该方法在第一部分中被认为是满足量子frobenius条件的自偶会运算符,从而确保相应的Schrödinger方程具有共同的多时间解决方案。与经典的情况一样,我们在这里获得了系统的磁性和非磁性家族。我们还显示了两类量子系统之间多时间依赖性量子图的存在。
This is the third article in our series of articles exploring connections between dynamical systems of Stäckel-type and of Painlevé-type. In this article we present a method of deforming of minimally quantized quasi-Stäckel Hamiltonians, considered in Part I to self-adjoint operators satisfying the quantum Frobenius condition, thus guaranteeing that the corresponding Schrödinger equations posses common, multi-time solutions. As in the classical case, we obtain here both magnetic and non-magnetic families of systems. We also show the existence of multitime-dependent quantum canonical maps between both classes of quantum systems.