论文标题

内部和向外网络影响分析

Inward and Outward Network Influence Analysis

论文作者

Wu, Yujia, Lan, Wei, Zou, Tao, Tsai, Chih-Ling

论文摘要

在网络分析中测量网络中节点之间的异质影响至关重要。本文提出了一个内向和向外的网络影响(IONI)模型,以评估淋巴结异质性。具体而言,我们允许两种类型的影响参数。一个人衡量每个节点对他人发挥的影响的大小(外部影响),而我们引入了一个新参数,以量化每个节点的接受性,以受到他人影响(内向影响)。因此,这两种影响力的措施自然地将所有节点分类为四个象限(高向外和向外,向外,向外和向外,低向外和向外,高和低向外和向外)。为了在实践中证明我们的四季度聚类方法,我们应用了准最大可能性方法来估计影响参数,并显示了所得估计量的渐近性特性。此外,提出了分数测试来检查两种影响参数的均匀性。为了提高有关节点影响的推论的准确性,我们引入了一个选择最佳影响模型的贝叶斯信息标准。通过模拟研究和涉及客户分割的经验示例来说明IONI模型和四季度聚类方法的有用性。

Measuring heterogeneous influence across nodes in a network is critical in network analysis. This paper proposes an Inward and Outward Network Influence (IONI) model to assess nodal heterogeneity. Specifically, we allow for two types of influence parameters; one measures the magnitude of influence that each node exerts on others (outward influence), while we introduce a new parameter to quantify the receptivity of each node to being influenced by others (inward influence). Accordingly, these two types of influence measures naturally classify all nodes into four quadrants (high inward and high outward, low inward and high outward, low inward and low outward, high inward and low outward). To demonstrate our four-quadrant clustering method in practice, we apply the quasi-maximum likelihood approach to estimate the influence parameters, and we show the asymptotic properties of the resulting estimators. In addition, score tests are proposed to examine the homogeneity of the two types of influence parameters. To improve the accuracy of inferences about nodal influences, we introduce a Bayesian information criterion that selects the optimal influence model. The usefulness of the IONI model and the four-quadrant clustering method is illustrated via simulation studies and an empirical example involving customer segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源