论文标题
Riesz电位在Euler-Poisson系统的弱量唯一性中的作用
The role of Riesz potentials in the weak-strong uniqueness for Euler-Poisson systems
论文作者
论文摘要
在本文中,对于整个空间中的Euler-Poisson系统,证明了弱的唯一原理,并具有初始数据,因此存在强大的解决方案。 Riesz电位的一些结果用于证明被认为是弱的公式的合理性。然后,一个人遵循相对能量方法,为了处理泊松方程的解决方案,采用了Riesz电位理论。
In this article, the weak-strong uniqueness principle is proved for an Euler-Poisson system in the whole space, with initial data so that the strong solution exists. Some results on Riesz potentials are used to justify the considered weak formulation. Then, one follows the relative energy methodology and, in order to handle the solution of Poisson's equation, employs the theory of Riesz potentials.