论文标题
数据辅助水下声音射线传播建模
Data-aided Underwater Acoustic Ray Propagation Modeling
论文作者
论文摘要
声学传播模型广泛用于许多海洋和其他水下应用中。大多数常规模型是声波方程的近似解决方案,需要事先提供准确的环境知识。环境参数可能并不总是容易或准确测量的。尽管数据驱动的技术可能使我们能够在不需要先前的环境知识的情况下对声学传播进行建模,但是在数据收集困难且昂贵的海洋应用中,这种技术往往是渴望数据的,并且通常是不可行的。我们提出了基于数据辅助射线物理学的高频声传播建模方法,使我们能够仅使用少量数据训练模型。所提出的框架不仅是数据效率的,而且还具有灵活性来合并不同程度的环境知识,并概括地允许推断收集数据的区域以外。我们通过四个数值案例研究和一个受控的实验证明了我们方法的可行性和适用性。我们还针对经典数据驱动技术的方法基准了我们的方法的性能。
Acoustic propagation models are widely used in numerous oceanic and other underwater applications. Most conventional models are approximate solutions of the acoustic wave equation, and require accurate environmental knowledge to be available beforehand. Environmental parameters may not always be easily or accurately measurable. While data-driven techniques might allow us to model acoustic propagation without the need for extensive prior environmental knowledge, such techniques tend to be data-hungry and often infeasible in oceanic applications where data collection is difficult and expensive. We propose a data-aided ray physics based high frequency acoustic propagation modeling approach that enables us to train models with only a small amount of data. The proposed framework is not only data-efficient, but also offers flexibility to incorporate varying degrees of environmental knowledge, and generalizes well to permit extrapolation beyond the area where data was collected. We demonstrate the feasibility and applicability of our method through four numerical case studies, and one controlled experiment. We also benchmark our method's performance against classical data-driven techniques.