论文标题

大规模MIMO检测的退火Langevin动力学

Annealed Langevin Dynamics for Massive MIMO Detection

论文作者

Zilberstein, Nicolas, Dick, Chris, Doost-Mohammady, Rahman, Sabharwal, Ashutosh, Segarra, Santiago

论文摘要

已知在多输入多输出(MIMO)系统中解决最佳符号检测问题是NP-HARD。因此,任何实践相关性检测器的目的都是使其合理地接近最佳解决方案,同时检查计算复杂性。在这项工作中,我们根据Langevin(随机)动力学的退火版本提出了一个MIMO检测器。更确切地说,我们定义了一个随机动力学过程,其固定分布与符号的后部分布相吻合,鉴于我们的观察结果。从本质上讲,这使我们能够通过从提出的langevin动力学中采样传输符号的最大后验估计器。此外,我们通过逐渐添加一系列噪声,并减少轨迹,从而确保估计的符号属于预先指定的离散星座,从而逐步添加一系列噪声,仔细地制作了这种随机动态。基于提出的MIMO检测器,我们还通过神经网络通过展开和参数化一个术语(可能性得分)来设计该方法的强大版本。通过合成和现实世界数据的数值实验,我们表明我们提出的检测器产生最新的符号错误率性能,并且稳健的版本变为噪声变化不可知。

Solving the optimal symbol detection problem in multiple-input multiple-output (MIMO) systems is known to be NP-hard. Hence, the objective of any detector of practical relevance is to get reasonably close to the optimal solution while keeping the computational complexity in check. In this work, we propose a MIMO detector based on an annealed version of Langevin (stochastic) dynamics. More precisely, we define a stochastic dynamical process whose stationary distribution coincides with the posterior distribution of the symbols given our observations. In essence, this allows us to approximate the maximum a posteriori estimator of the transmitted symbols by sampling from the proposed Langevin dynamic. Furthermore, we carefully craft this stochastic dynamic by gradually adding a sequence of noise with decreasing variance to the trajectories, which ensures that the estimated symbols belong to a pre-specified discrete constellation. Based on the proposed MIMO detector, we also design a robust version of the method by unfolding and parameterizing one term -- the score of the likelihood -- by a neural network. Through numerical experiments in both synthetic and real-world data, we show that our proposed detector yields state-of-the-art symbol error rate performance and the robust version becomes noise-variance agnostic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源