论文标题

使验证的语言模型良好的长尾学习者

Making Pretrained Language Models Good Long-tailed Learners

论文作者

Zhang, Chen, Ren, Lei, Wang, Jingang, Wu, Wei, Song, Dawei

论文摘要

迅速调整在有效利用预训练的知识方面的能力表现出了几次分类的吸引力。这促使我们检查了以下假设:迅速调整也是长尾分类的一个有希望的选择,因为尾巴类别从直觉上讲。为了实现这一目标,我们进行了经验研究以检查该假设。结果表明,及时调整的语言模型至少是良好的长尾学习者。对于为什么迅速调整可以在长尾分类中取得良好性能的直觉,我们通过逐步弥合迅速调整和常用的Finetuning之间的差距来进行深入分析。摘要是,与不太重要的输入结构相比,分类器结构和参数化构成了制作良好长尾学习者的关键。最后,我们验证发现对几乎没有的分类的适用性。良好的长尾学习者可以作为欢乐而缩写。

Prompt-tuning has shown appealing performance in few-shot classification by virtue of its capability in effectively exploiting pre-trained knowledge. This motivates us to check the hypothesis that prompt-tuning is also a promising choice for long-tailed classification, since the tail classes are intuitively few-shot ones. To achieve this aim, we conduct empirical studies to examine the hypothesis. The results demonstrate that prompt-tuning makes pretrained language models at least good long-tailed learners. For intuitions on why prompt-tuning can achieve good performance in long-tailed classification, we carry out in-depth analyses by progressively bridging the gap between prompt-tuning and commonly used finetuning. The summary is that the classifier structure and parameterization form the key to making good long-tailed learners, in comparison with the less important input structure. Finally, we verify the applicability of our finding to few-shot classification. Good long-tailed learners can be abbreviated as Glee.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源