论文标题
安全和私人联邦神经影像
Secure & Private Federated Neuroimaging
论文作者
论文摘要
生物医学数据的量继续迅速增长。但是,由于安全,隐私和监管问题,从多个站点收集数据以进行联合分析仍然具有挑战性。为了克服这一挑战,我们使用联合学习,该学习可以通过多个数据源对神经网络模型进行分布式培训,而无需共享数据。每个站点在其私人数据上训练神经网络一段时间,然后与联合控制器共享神经网络参数(即权重,梯度),从而汇总了本地模型,将所得的社区模型发送回每个站点,并重复该过程。我们联合的学习体系结构METISFL提供了强大的安全性和隐私。首先,示例数据永远不会离开站点。其次,在传输之前对神经网络参数进行加密,并在全塑形加密下计算全局神经模型。最后,我们使用信息理论方法来限制信息从神经模型中泄漏,以防止好奇的站点执行模型反转或会员攻击。我们对神经成像任务中安全,私人联合学习的表现进行了彻底的评估,包括预测阿尔茨海默氏病并估算磁共振成像(MRI)研究,在具有挑战性的,异构的联合环境中,该环境中的站点具有不同量的数据和统计分布。
The amount of biomedical data continues to grow rapidly. However, collecting data from multiple sites for joint analysis remains challenging due to security, privacy, and regulatory concerns. To overcome this challenge, we use Federated Learning, which enables distributed training of neural network models over multiple data sources without sharing data. Each site trains the neural network over its private data for some time, then shares the neural network parameters (i.e., weights, gradients) with a Federation Controller, which in turn aggregates the local models, sends the resulting community model back to each site, and the process repeats. Our Federated Learning architecture, MetisFL, provides strong security and privacy. First, sample data never leaves a site. Second, neural network parameters are encrypted before transmission and the global neural model is computed under fully-homomorphic encryption. Finally, we use information-theoretic methods to limit information leakage from the neural model to prevent a curious site from performing model inversion or membership attacks. We present a thorough evaluation of the performance of secure, private federated learning in neuroimaging tasks, including for predicting Alzheimer's disease and estimating BrainAGE from magnetic resonance imaging (MRI) studies, in challenging, heterogeneous federated environments where sites have different amounts of data and statistical distributions.