论文标题

离散重力的标量曲率

Scalar Curvature in Discrete Gravity

论文作者

Chamseddine, Ali H., Malaeb, Ola, Najem, Sara

论文摘要

我们专注于在数值上研究二维离散空间中标量曲率张量。使用两个可能的切片将两球的连续度量转换为晶格的指标。第一个,我们使用两个整数,而在第二个整数中,我们考虑了其中一种坐标是可忽略的情况。然后将两种情况的数值结果与连续限制中的预期值进行比较,因为晶格的细胞数量变得非常大。

We focus on studying, numerically, the scalar curvature tensor in a two-dimensional discrete space. The continuous metric of a two-sphere is transformed into that of a lattice using two possible slicings. In the first, we use two integers, while in the second we consider the case where one of the coordinates is ignorable. The numerical results of both cases are then compared with the expected values in the continuous limit as the number of cells of the lattice becomes very large.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源