论文标题
连接的代数方面:从扭转,曲率和lie后代数到加夫里洛夫的双重指数和特殊多项式
Algebraic aspects of connections: from torsion, curvature, and post-Lie algebras to Gavrilov's double exponential and special polynomials
论文作者
论文摘要
了解具有一般仿射连接的多种流形的代数结构是一个自然问题。在这种情况下,A。V。Gavrilov介绍了框架的代数概念,该概念由Lie括号(通常的jacobi traget of vector Fields)和岩浆产品组成,而它们之间没有任何兼容性关系。在这项工作中,我们将表明,与曲率和扭转的仿射联系总是引起lie后代数以及$ d $ - 代数。在此后Lie后代数框架中,重新审视了扭力和曲率的概念以及Gavrilov的特殊多项式和双重指数的概念。我们展现了Lie Magnus的扩展,Grossman-Larson产品与$ K $ -MAP,$α$ -MAP和$β$ -MAP之间的关系,Gavrilov引入了三种特定功能,目的是理解几何学和代数性和代数性能,即双向指数的属性,可以理解为多型杂种的双重指数。我们通过表明特定类别的几何特殊多项式是由扭转和曲率产生的,对加夫里洛夫的猜想提出了部分答案。这种方法为进一步研究提供了许多可能性,例如数值集成剂和Riemannian歧管上的粗糙路径。
Understanding the algebraic structure underlying a manifold with a general affine connection is a natural problem. In this context, A. V. Gavrilov introduced the notion of framed Lie algebra, consisting of a Lie bracket (the usual Jacobi bracket of vector fields) and a magmatic product without any compatibility relations between them. In this work we will show that an affine connection with curvature and torsion always gives rise to a post-Lie algebra as well as a $D$-algebra. The notions of torsion and curvature together with Gavrilov's special polynomials and double exponential are revisited in this post-Lie algebraic framework. We unfold the relations between the post-Lie Magnus expansion, the Grossman-Larson product and the $K$-map, $α$-map and $β$-map, three particular functions introduced by Gavrilov with the aim of understanding the geometric and algebraic properties of the double-exponential, which can be understood as a geometric variant of the Baker-Campbell-Hausdorff formula. We propose a partial answer to a conjecture by Gavrilov, by showing that a particular class of geometrically special polynomials is generated by torsion and curvature. This approach unlocks many possibilities for further research such as numerical integrators and rough paths on Riemannian manifolds.