论文标题

连接的代数方面:从扭转,曲率和lie后代数到加夫里洛夫的双重指数和特殊多项式

Algebraic aspects of connections: from torsion, curvature, and post-Lie algebras to Gavrilov's double exponential and special polynomials

论文作者

Al-Kaabi, M. J. H., Ebrahimi-Fard, K., Manchon, D., Munthe-Kaas, H. Z.

论文摘要

了解具有一般仿射连接的多种流形的代数结构是一个自然问题。在这种情况下,A。V。Gavrilov介绍了框架的代数概念,该概念由Lie括号(通常的jacobi traget of vector Fields)和岩浆产品组成,而它们之间没有任何兼容性关系。在这项工作中,我们将表明,与曲率和扭转的仿射联系总是引起lie后代数以及$ d $ - 代数。在此后Lie后代数框架中,重新审视了扭力和曲率的概念以及Gavrilov的特殊多项式和双重指数的概念。我们展现了Lie Magnus的扩展,Grossman-Larson产品与$ K $ -MAP,$α$ -MAP和$β$ -MAP之间的关系,Gavrilov引入了三种特定功能,目的是理解几何学和代数性和代数性能,即双向指数的属性,可以理解为多型杂种的双重指数。我们通过表明特定类别的几何特殊多项式是由扭转和曲率产生的,对加夫里洛夫的猜想提出了部分答案。这种方法为进一步研究提供了许多可能性,例如数值集成剂和Riemannian歧管上的粗糙路径。

Understanding the algebraic structure underlying a manifold with a general affine connection is a natural problem. In this context, A. V. Gavrilov introduced the notion of framed Lie algebra, consisting of a Lie bracket (the usual Jacobi bracket of vector fields) and a magmatic product without any compatibility relations between them. In this work we will show that an affine connection with curvature and torsion always gives rise to a post-Lie algebra as well as a $D$-algebra. The notions of torsion and curvature together with Gavrilov's special polynomials and double exponential are revisited in this post-Lie algebraic framework. We unfold the relations between the post-Lie Magnus expansion, the Grossman-Larson product and the $K$-map, $α$-map and $β$-map, three particular functions introduced by Gavrilov with the aim of understanding the geometric and algebraic properties of the double-exponential, which can be understood as a geometric variant of the Baker-Campbell-Hausdorff formula. We propose a partial answer to a conjecture by Gavrilov, by showing that a particular class of geometrically special polynomials is generated by torsion and curvature. This approach unlocks many possibilities for further research such as numerical integrators and rough paths on Riemannian manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源