论文标题
通过预测提高了无政府状态的价格
Improved Price of Anarchy via Predictions
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A central goal in algorithmic game theory is to analyze the performance of decentralized multiagent systems, like communication and information networks. In the absence of a central planner who can enforce how these systems are utilized, the users can strategically interact with the system, aiming to maximize their own utility, possibly leading to very inefficient outcomes, and thus a high price of anarchy. To alleviate this issue, the system designer can use decentralized mechanisms that regulate the use of each resource (e.g., using local queuing protocols or scheduling mechanisms), but with only limited information regarding the state of the system. These information limitations have a severe impact on what such decentralized mechanisms can achieve, so most of the success stories in this literature have had to make restrictive assumptions (e.g., by either restricting the structure of the networks or the types of cost functions). In this paper, we overcome some of the obstacles that the literature has imposed on decentralized mechanisms, by designing mechanisms that are enhanced with predictions regarding the missing information. Specifically, inspired by the big success of the literature on "algorithms with predictions", we design decentralized mechanisms with predictions and evaluate their price of anarchy as a function of the prediction error, focusing on two very well-studied classes of games: scheduling games and multicast network formation games.