论文标题
一类手性量表理论的异常方程的整数解决方案
Integer solutions to the anomaly equations for a class of chiral gauge theories
论文作者
论文摘要
我们找到了在一类规定理论中取消本地规格异常的方程式的所有整数电荷解决方案,这些量规理论通过$ g \ times u(1)$的量规组扩展了标准模型(SM),其中$ g $是任意的半imimple compact lie lie群。在$ g \ times u(1)$量规上的相互作用下,SM费米子被认为是中性的,而新的费米子则在新的和SM量规组的非平凡表示中转换。当将后者嵌入任意的半神经紧凑型谎言组中时,我们的分析也有效。最近已经研究了具有这种结构的理论作为基于意外对称性的复合轴模型,并可以为轴突质量问题提供场理论分辨率。我们将结果应用于现象学兴趣的案例,并证明了具有Peccei-Quinn对称性的电荷分配的存在,直至维度18。
We find all the integer charge solutions to the equations for the cancellation of local gauge anomalies in a class of gauge theories which extend the Standard Model (SM) by a gauge group of the form $G \times U(1)$, where $G$ is an arbitrary semisimple compact Lie group. The SM fermions are assumed to be neutral under $G \times U(1)$ gauge interactions, while the new fermions transform in non-trivial representations of both the new and the SM gauge groups. Our analysis is valid also when the latter is embedded in an arbitrary semisimple compact Lie group. Theories with this structure have been recently studied as models of composite axions based on accidental symmetries and can provide a field theory resolution to the axion quality problem. We apply our results to cases of phenomenological interest and prove the existence of charge assignments with Peccei-Quinn symmetry protected up to dimension 18.