论文标题
SD-AETO:服务部署启用了自适应边缘任务MEC中的卸载
SD-AETO: Service Deployment Enabled Adaptive Edge Task Offloading in MEC
论文作者
论文摘要
近年来,Edge Computing作为未来网络的重要支柱,已迅速发展。任务卸载是边缘计算的关键部分,可以为资源受限设备提供计算资源,以运行计算密集型应用程序,加速计算速度并节省能源。有效且可行的任务卸载计划不仅可以极大地提高经验质量(QOE),而且还可以为5G/B5G网络,工业互联网(IIOT),计算网络等提供强有力的支持和帮助。为了实现这些目标,本文提出了由服务部署(SD-AETO)辅助的自适应边缘任务卸载方案,重点是优化能量利用率(EUR)和处理延迟。在SD-AETO方案的实施前阶段,援引服务部署方案以协助考虑到每种服务的受欢迎程度,以协助任务卸载。最佳服务部署方案是通过使用近似部署图(AD-GRAPH)获得的。此外,提出了一个任务调度和队列卸载设计步骤,以根据任务优先级完成SD-AETO方案。任务优先级是由相应的服务受欢迎程度和任务卸载方向生成的。最后,我们分析了我们的SD-AETO方案,并将其与相关方法进行比较,结果表明,对于边缘网络中的大规模任务方案,我们的方案具有较高的优势卸载率和较低的资源消耗。
In recent years, edge computing, as an important pillar for future networks, has been developed rapidly. Task offloading is a key part of edge computing that can provide computing resources for resource-constrained devices to run computing-intensive applications, accelerate computing speed and save energy. An efficient and feasible task offloading scheme can not only greatly improve the quality of experience (QoE) but also provide strong support and assistance for 5G/B5G networks, the industrial Internet of Things (IIoT), computing networks and so on. To achieve these goals, this paper proposes an adaptive edge task offloading scheme assisted by service deployment (SD-AETO) focusing on the optimization of the energy utilization ratio (EUR) and the processing latency. In the pre-implementation stage of the SD-AETO scheme, a service deployment scheme is invoked to assist with task offloading considering each service's popularity. The optimal service deployment scheme is obtained by using the approximate deployment graph (AD-graph). Furthermore, a task scheduling and queue offloading design procedure is proposed to complete the SD-AETO scheme based on the task priority. The task priority is generated by the corresponding service popularity and task offloading direction. Finally, we analyze our SD-AETO scheme and compare it with related approaches, and the results show that our scheme has a higher edge offloading rate and lower resource consumption for massive task scenarios in the edge network.