论文标题
VQE具有可变ansatz的有效梯度敏感替代框架
An Efficient Gradient Sensitive Alternate Framework for VQE with Variable Ansatz
论文作者
论文摘要
旨在确定哈密顿量在嘈杂的中间尺度量子(NISQ)设备上描述的量子系统的基态能量的差异量子本质量(VQE)是变体量子算法(VQAS)的最重要应用之一。然而,由于贫瘠的高原(BP),不可忽略的栅极误差和NISQ设备的相干时间有限,当前VQE算法的准确性和训练性受到了显着影响。为了解决这些问题,本文提出了一个具有可变ansatz的梯度敏感的替代框架,以增强VQE的性能。我们首先通过交替解决多目标优化问题和原始VQE提出了VA-VQE的理论框架,其中多目标优化问题是根据成本函数值和梯度幅度定义的。然后,我们提出了一种基于候选树和修改的多目标遗传算法的双$ε$ - 绿色策略的新型实施方法。结果,以ANSATZ和参数角度避免了局部优势,并增强了输出ANSATZ的稳定性。实验结果表明,与硬件有效的ANSATZ相比,我们的框架显示,发现解决方案的误差大大改善了高达87.9%。此外,与全随机的VA-VQE实施相比,我们的框架能够以相似的量子成本来提高错误和稳定性的改善和稳定性高达36.0%和58.7%。
Variational quantum eigensolver (VQE), aiming at determining the ground state energy of a quantum system described by a Hamiltonian on noisy intermediate scale quantum (NISQ) devices, is among the most significant applications of variational quantum algorithms (VQAs). However, the accuracy and trainability of the current VQE algorithm are significantly influenced due to the barren plateau (BP), the non-negligible gate error and limited coherence time in NISQ devices. To tackle these issues, a gradient-sensitive alternate framework with variable ansatz is proposed in this paper to enhance the performance of the VQE. We first propose a theoretical framework for VA-VQE via alternately solving a multi-objective optimization problem and the original VQE, where the multi-objective optimization problem is defined with respect to cost function values and gradient magnitudes. Then, we propose a novel implementation method based on the double $ε$-greedy strategy with the candidate tree and modified multi-objective genetic algorithm. As a result, the local optima are avoided both in ansatz and parameter perspectives, and the stability of output ansatz is enhanced. The experimental results indicate that our framework shows considerably improvement of the error of the found solution by up to 87.9% compared with the hardware-efficient ansatz. Furthermore, compared with the full-randomized VA-VQE implementation, our framework is able to obtain the improvement of the error and the stability by up to 36.0% and 58.7%, respectively, with similar quantum costs.