论文标题
使用人工智能增强心电图的新发糖尿病评估
New-Onset Diabetes Assessment Using Artificial Intelligence-Enhanced Electrocardiography
论文作者
论文摘要
21.4%的糖尿病成年人中存在未诊断的糖尿病。由于筛查率的限制,糖尿病可能保持无症状和未发现。为了解决这个问题,建议医生和公众使用问卷,例如美国糖尿病协会(ADA)风险测试。基于证据表明血糖浓度会影响心脏电生理学,我们假设人工智能(AI)增强的心电图(ECG)可以识别患有新发作糖尿病的成年人。我们培训了一个神经网络,使用12铅ECG且容易获得的人口统计学估算HBA1C。我们回顾性地组装了一个由配对ECG和HBA1C数据的患者组成的数据集。同时接受心电图和HBA1C的患者人群可能会偏向于完整的门诊群体的样本,因此我们调整了对每个患者的重要性,以产生更具代表性的伪人群。我们发现,基于ECG的评估的表现优于ADA风险测试,在曲线下达到较高的面积(0.80 vs. 0.68)和阳性预测值(13%vs. 9%) - 同类糖尿病患病率的2.6倍。 AI增强的ECG明显优于电生理学家对ECG的解释,这表明该任务超出了当前的临床能力。鉴于ECG在诊所和可穿戴设备中的流行率,这种工具将使精确,自动化的糖尿病评估广泛使用。
Undiagnosed diabetes is present in 21.4% of adults with diabetes. Diabetes can remain asymptomatic and undetected due to limitations in screening rates. To address this issue, questionnaires, such as the American Diabetes Association (ADA) Risk test, have been recommended for use by physicians and the public. Based on evidence that blood glucose concentration can affect cardiac electrophysiology, we hypothesized that an artificial intelligence (AI)-enhanced electrocardiogram (ECG) could identify adults with new-onset diabetes. We trained a neural network to estimate HbA1c using a 12-lead ECG and readily available demographics. We retrospectively assembled a dataset comprised of patients with paired ECG and HbA1c data. The population of patients who receive both an ECG and HbA1c may a biased sample of the complete outpatient population, so we adjusted the importance placed on each patient to generate a more representative pseudo-population. We found ECG-based assessment outperforms the ADA Risk test, achieving a higher area under the curve (0.80 vs. 0.68) and positive predictive value (13% vs. 9%) -- 2.6 times the prevalence of diabetes in the cohort. The AI-enhanced ECG significantly outperforms electrophysiologist interpretation of the ECG, suggesting that the task is beyond current clinical capabilities. Given the prevalence of ECGs in clinics and via wearable devices, such a tool would make precise, automated diabetes assessment widely accessible.