论文标题

基于复杂性的神经生理记录中的编码信息定量

Complexity-based Encoded Information Quantification in Neurophysiological Recordings

论文作者

Fuhrer, Julian, Blenkmann, Alejandro, Endestad, Tor, Solbakk, Anne-Kristin, Glette, Kyrre

论文摘要

大脑活动在睡眠,认知任务和动作之间差异很大。信息理论是分析量化这些大脑状态的合适概念。基于神经生理记录,该概念可以处理复杂的数据集,对数据结构不含任何要求,并且可以推断当前的基本大脑机制。具体而言,通过利用算法信息理论,可以估计大脑反应中包含的绝对信息。尽管当前将该理论应用于神经生理记录的方法可以区分不同的大脑状态,但它们在直接量化大脑反应之间的相似性或编码信息的程度上受到限制。在这里,我们提出了一种以算法信息理论为基础的方法,该方法通过通过基于压缩的方案估算编码的信息来直接陈述响应的相似性。我们通过将其应用于合成和真实神经生理学数据并将其效率与相互信息度量进行比较来验证该方法。该提出的程序特别适合与不同事件类型进行对比的任务范式,因为它可以精确量化神经元反应的相似性。

Brain activity differs vastly between sleep, cognitive tasks, and action. Information theory is an appropriate concept to analytically quantify these brain states. Based on neurophysiological recordings, this concept can handle complex data sets, is free of any requirements about the data structure, and can infer the present underlying brain mechanisms. Specifically, by utilizing algorithmic information theory, it is possible to estimate the absolute information contained in brain responses. While current approaches that apply this theory to neurophysiological recordings can discriminate between different brain states, they are limited in directly quantifying the degree of similarity or encoded information between brain responses. Here, we propose a method grounded in algorithmic information theory that affords direct statements about responses' similarity by estimating the encoded information through a compression-based scheme. We validated this method by applying it to both synthetic and real neurophysiological data and compared its efficiency to the mutual information measure. This proposed procedure is especially suited for task paradigms contrasting different event types because it can precisely quantify the similarity of neuronal responses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源