论文标题

无限非平稳聚类的流式推断

Streaming Inference for Infinite Non-Stationary Clustering

论文作者

Schaeffer, Rylan, Liu, Gabrielle Kaili-May, Du, Yilun, Linderman, Scott, Fiete, Ila Rani

论文摘要

以无监督的方式从连续的非机构数据流中学习是面临智能代理面临的最常见和最具挑战性的环境之一。在这里,我们在所有三个条件(无监督,流媒体,非平稳)的情况下攻击学习,在聚类的背景下,也称为混合建模。我们介绍了一种新颖的聚类算法,该算法将混合模型赋予了能够按照数据以概率,时间变化和原则性的方式在线创建新群集的能力。为了实现这一目标,我们首先定义了一个新颖的随机过程,称为“动力学中国餐厅”过程(Dynamilical CRP),这是一套分区的不可分割的分布。接下来,我们表明动态CRP在集群分配上提供了非平稳的先验,并产生有效的流变量推理算法。我们的结论是,实验表明,动态CRP可以使用高斯和非高斯的可能性应用于多样的合成和真实数据。

Learning from a continuous stream of non-stationary data in an unsupervised manner is arguably one of the most common and most challenging settings facing intelligent agents. Here, we attack learning under all three conditions (unsupervised, streaming, non-stationary) in the context of clustering, also known as mixture modeling. We introduce a novel clustering algorithm that endows mixture models with the ability to create new clusters online, as demanded by the data, in a probabilistic, time-varying, and principled manner. To achieve this, we first define a novel stochastic process called the Dynamical Chinese Restaurant Process (Dynamical CRP), which is a non-exchangeable distribution over partitions of a set; next, we show that the Dynamical CRP provides a non-stationary prior over cluster assignments and yields an efficient streaming variational inference algorithm. We conclude with experiments showing that the Dynamical CRP can be applied on diverse synthetic and real data with Gaussian and non-Gaussian likelihoods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源