论文标题

H-MM1的干涉视图。 I.直接观察NH3耗竭

An Interferometric View of H-MM1. I. Direct Observation of NH3 Depletion

论文作者

Pineda, Jaime E., Harju, Jorma, Caselli, Paola, Sipilä, Olli, Juvela, Mika, Vastel, Charlotte, Rosolowsky, Erik, Burkert, Andreas, Friesen, Rachel K., Shirley, Yancy, Maureira, María José, Choudhury, Spandan, Segura-Cox, Dominique M., Güsten, Rolf, Punanova, Anna, Bizzocchi, Luca, Goodman, Alyssa A.

论文摘要

NH $ _3 $的光谱线是密集分子云核中物理条件的有用探针。除了光谱方面的优势外,还建议氨耐冻结在谷物表面上,这应该使其成为研究寒冷,致密核心内部部分的较高工具。在这里,我们将高分辨率的NH $ _3 $观测值带入了非常大的阵列(VLA)和绿色银行望远镜(GBT),向Prestellar Core。这些观察结果显示了一个外部区域,其分数为nh $ _3 $的x(nh $ _3 $)=(1.975 $ \ pm $ 0.005)$ \ times 10^{ - 8} $($ \ pm 10 \%$ $ $ $ $ $ $ $ $ $ $),但它也显示了x(nh $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _ 3 $ _ 3 $ _ 3 $ _ 3 $ _ 3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 \ times 10^{22} $ cm $^{ - 2} $。我们得出了核心的密度模型,发现分数丰度的断点发生在密度n(h $ _2 $)$ \ sim 2 \ sim 2 \ times10^5 $ cm $^{ - 3} $,除此之外,分数丰度降低了,随着电力law $ n^$ n^{ - 1.1} $。这种幂律行为通过化学模型很好地再现,在该化学模型中,谷物上的吸附占主导地去除高密度下气体中的氨和相关物种。我们建议,断裂点密度根据温度和谷物特性的不同而变化为核心,但是由于无星岩心的中央部分积聚的优势,耗尽功率定律可能接近$ n^{ - 1} $。

Spectral lines of ammonia, NH$_3$, are useful probes of the physical conditions in dense molecular cloud cores. In addition to advantages in spectroscopy, ammonia has also been suggested to be resistant to freezing onto grain surfaces, which should make it a superior tool for studying the interior parts of cold, dense cores. Here we present high-resolution NH$_3$ observations with the Very Large Array (VLA) and Green Bank Telescope (GBT) towards a prestellar core. These observations show an outer region with a fractional NH$_3$ abundance of X(NH$_3$) = (1.975$\pm$0.005)$\times 10^{-8}$ ($\pm 10\%$ systematic), but it also reveals that after all, the X(NH$_3$) starts to decrease above a H$_2$ column density of $\approx 2.6 \times 10^{22}$ cm$^{-2}$. We derive a density model for the core and find that the break-point in the fractional abundance occurs at the density n(H$_2$) $\sim 2\times10^5$ cm$^{-3}$, and beyond this point the fractional abundance decreases with increasing density, following the power law $n^{-1.1}$. This power-law behavior is well reproduced by chemical models where adsorption onto grains dominates the removal of ammonia and related species from the gas at high densities. We suggest that the break-point density changes from core to core depending on the temperature and the grain properties, but that the depletion power law is anyway likely to be close to $n^{-1}$ owing to the dominance of accretion in the central parts of starless cores.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源