论文标题

使用大型EHR数据集对抗精神病药对ICU的deli妄患者的影响的因果发现

Causal Discovery on the Effect of Antipsychotic Drugs on Delirium Patients in the ICU using Large EHR Dataset

论文作者

Adib, Riddhiman, Gani, Md Osman, Ahamed, Sheikh Iqbal, Adibuzzaman, Mohammad

论文摘要

del妄发生在重症监护病房(ICU)的约80%病例中,与住院时间更长,死亡率增加和其他相关问题有关。 del妄没有任何基于生物标志物的诊断,通常用抗精神病药(APD)治疗。但是,多项研究表明,关于APD在治疗del妄的疗效或安全性方面的争议。由于随机对照试验(RCT)的成本高昂且耗时,因此我们旨在通过回顾性队列分析来解决APD在del妄处理中的疗效的研究问题。我们计划使用因果推理框架来寻找基本的因果结构模型,以利用ICU患者的大量观察数据的可用性。为了探索与APD相关的安全结果,我们旨在使用与del妄相关的各种协变量的大型观察数据集建立ICU中del妄的因果模型。我们利用了Mimic III数据库,该数据库是一个广泛的电子健康记录(EHR)数据集,具有53,423个不同的医院入院。我们的无效假设是:在ICU中不同药物组下,del妄患者的结局没有显着差异。通过我们的探索性,基于机器学习的和因果分析,我们的发现如下:氟哌啶醇药物组的患者平均住宿和最高停赛时间更高,而氟哌啶醇组比其他两组相比,一年中的死亡率更高。我们生成的因果模型明确显示了不同协变量之间的功能关系。对于将来的工作,我们计划在数据集上进行时变分析。

Delirium occurs in about 80% cases in the Intensive Care Unit (ICU) and is associated with a longer hospital stay, increased mortality and other related issues. Delirium does not have any biomarker-based diagnosis and is commonly treated with antipsychotic drugs (APD). However, multiple studies have shown controversy over the efficacy or safety of APD in treating delirium. Since randomized controlled trials (RCT) are costly and time-expensive, we aim to approach the research question of the efficacy of APD in the treatment of delirium using retrospective cohort analysis. We plan to use the Causal inference framework to look for the underlying causal structure model, leveraging the availability of large observational data on ICU patients. To explore safety outcomes associated with APD, we aim to build a causal model for delirium in the ICU using large observational data sets connecting various covariates correlated with delirium. We utilized the MIMIC III database, an extensive electronic health records (EHR) dataset with 53,423 distinct hospital admissions. Our null hypothesis is: there is no significant difference in outcomes for delirium patients under different drug-group in the ICU. Through our exploratory, machine learning based and causal analysis, we had findings such as: mean length-of-stay and max length-of-stay is higher for patients in Haloperidol drug group, and haloperidol group has a higher rate of death in a year compared to other two-groups. Our generated causal model explicitly shows the functional relationships between different covariates. For future work, we plan to do time-varying analysis on the dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源