论文标题

颗粒表面流在平坦的摩擦壁之间。第1部分。运动学

Granular surface flows confined between flat, frictional walls. Part 1. Kinematics

论文作者

Richard, Patrick, Valance, Alexandre, Delannay, Renaud, Boltenhagen, Philippe

论文摘要

我们报告和分析了三维重力驱动的无内聚颗粒培养基流动的广泛离散元素方法模拟的结果,整个床上均限制在两个平坦和摩擦的侧壁之间。我们通过对两个限制侧壁之间的不同间隙宽度($ w $)进行模拟来关注侧壁的角色:从$ 5 $到$ 30 $谷物尺寸($ d $)。我们的结果表明存在两个不同的制度:用于流角度的状态i小于临界角$θ_c\大约40^\ circ $ and circime ii的流动角度大于$θ_c$。政权I对应于致密流,而属于制度II的流则表现出通过深度的体积分数的强烈变化。系统中确定了三个相关的长度:$ w $侧壁之间的差距,$ l $的长度表征体积分数的垂直变化和$ h $的特征长度与流向流速度的垂直变化相关的特征长度。使用这些长度,我们可以重新列出各种流量特性的曲线(例如,流向速度,颗粒温度,颗粒旋转...)。在政权II中,与政权I,$ L $和$ h $相比具有类似的行为。结果,政权II中的恢复概况仅涉及$ h $(或等效的$ l $)和$ w $。政权I和II之间存在其他差异。特别是,尽管$ h $(以固定$ W $为固定的$ W $)以$ W $(以固定流动角)的形式显示出相似的缩放率,但以$ h $(以固定$ W $为单位)的流量缩放量在两个方案中有所不同。

We report and analyse the results of extensive discrete element method simulations of three-dimensional gravity driven flows of cohesionless granular media over an erodible bed, the whole being confined between two flat and frictional sidewalls. We focus on the role of sidewalls by performing simulations for different gap widths ($W$) between the two confining sidewalls: from $5$ to $30$ grain sizes ($d$). Our results indicate the existence of two distinct regimes: regime I for flow angles smaller than the critical angle $θ_c\approx 40^\circ$ and regime II at flow angles larger than $θ_c$ . Regime I corresponds to dense flows whereas flows belonging to regime II exhibit a strong variation of the volume fraction through the depth. Three relevant lengths are identified in the system: $W$ the gap between sidewalls, $l$ the length characterizing the vertical variation of the volume fraction and $h$ a characteristic length associated with the vertical variation of the streamwise velocity. Using these lengths we can rescale the profiles of various flow properties (e.g. streamwise velocity, granular temperature, particle rotation...). In regime II, in contrast to regime I, $l$ and $h$ have a similar behaviour. As a consequence, the rescaled profiles in regime II only involve $h$ (or equivalently $l$) and $W$ . Other dissimilarities exist between regimes I and II. In particular, the scaling of the flow rate with $h$ (at fixed $W$ ) differs in the two regimes, although they display a similar scaling with $W$ (at fixed flow angle).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源