论文标题
EVOCUBE:用于多管图的遗传标签框架
Evocube: a Genetic Labeling Framework for Polycube-Maps
论文作者
论文摘要
在计算几何学的各个领域,多型映射用作基础复合物,包括没有内部奇异性的常规全甲状腺网状网格。但是,基于多立方体的方法背后的严格比对约束使其计算对通过有限元方法(FEM)中数值模拟中使用的CAD模型的挑战。我们提出了一种基于进化算法的新方法,以在这种情况下稳健地计算多立方体图。我们解决了标签问题,该标记问题旨在通过将一个基本轴为输入上的每个边界面分配给PolyCube对齐。先前的研究描述了通过贪婪的本地修复程序初始化和改善标签的方法。但是,这种算法缺乏鲁棒性,并且通常会融合到复杂几何形状的不准确溶液中。我们提出的框架通过将标签操作嵌入进化启发式,定义适应性,跨界和突变的背景下,从而减轻了这个问题。我们通过一千平滑和CAD网格评估我们的方法,显示EvoCube收敛于各种形状的有效标记。我们的方法的局限性也将进行彻底讨论。
Polycube-maps are used as base-complexes in various fields of computational geometry, including the generation of regular all-hexahedral meshes free of internal singularities. However, the strict alignment constraints behind polycube-based methods make their computation challenging for CAD models used in numerical simulation via Finite Element Method (FEM). We propose a novel approach based on an evolutionary algorithm to robustly compute polycube-maps in this context. We address the labeling problem, which aims to precompute polycube alignment by assigning one of the base axes to each boundary face on the input. Previous research has described ways to initialize and improve a labeling via greedy local fixes. However, such algorithms lack robustness and often converge to inaccurate solutions for complex geometries. Our proposed framework alleviates this issue by embedding labeling operations in an evolutionary heuristic, defining fitness, crossover, and mutations in the context of labeling optimization. We evaluate our method on a thousand smooth and CAD meshes, showing Evocube converges to valid labelings on a wide range of shapes. The limitations of our method are also discussed thoroughly.