论文标题

使用Conway-Maxwell Poisson变异性的尖峰计数数据的动态建模

Dynamic modeling of spike count data with Conway-Maxwell Poisson variability

论文作者

Wei, Ganchao, Stevenson, Ian H.

论文摘要

在大脑的许多区域,神经尖峰活动协方差与外部世界的特征,例如感觉刺激或动物的运动。实验发现表明,神经活动的变化会随着时间的流逝而变化,并可能提供有关外部世界的信息,而不是平均神经活动提供的信息。为了灵活地跟踪随时间变化的神经响应特性,我们在这里开发了一种动态模型,它使用Conway-Maxwell Poisson(CMP)观测值。 CMP分布可以灵活地描述相对于泊松分布的射击模式。在这里,我们跟踪CMP分布的参数随时间变化。使用模拟,我们表明正常的近似可以准确跟踪状态向量中的动力学,以供体和形状参数($λ$和$ν$)。然后,我们将模型拟合到来自原发性视觉皮层中神经元和海马“位置细胞”中的神经数据。我们发现,该方法超过基于泊松分布的先前动态模型。动态CMP模型提供了一个灵活的框架,用于跟踪随时间变化的非poisson计数数据,并且可能还具有神经科学以外的应用程序。

In many areas of the brain, neural spiking activity covaries with features of the external world, such as sensory stimuli or an animal's movement. Experimental findings suggest that the variability of neural activity changes over time and may provide information about the external world beyond the information provided by the average neural activity. To flexibly track time-varying neural response properties, here we developed a dynamic model with Conway-Maxwell Poisson (CMP) observations. The CMP distribution can flexibly describe firing patterns that are both under- and over-dispersed relative to the Poisson distribution. Here we track parameters of the CMP distribution as they vary over time. Using simulations, we show that a normal approximation can accurately track dynamics in state vectors for both the centering and shape parameters ($λ$ and $ν$). We then fit our model to neural data from neurons in primary visual cortex and "place cells" in the hippocampus. We find that this method out-performs previous dynamic models based on the Poisson distribution. The dynamic CMP model provides a flexible framework for tracking time-varying non-Poisson count data and may also have applications beyond neuroscience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源